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Group selection can overcome individual selection for selfishness and favour altruism if there is
variation among the founders of spatially distinct groups, and groups with many altruists become
substantially larger (or exist longer) than groups with few. Whether altruism can evolve in populations
that do not have an alternation of local population growth and global dispersal (‘‘viscous populations’’)
has been disputed for some time. Limited dispersal protects the altruists from the non-altruists, but also
hinders the export of altruism. In this article, we use the Pair Approximation technique (tracking the
dynamics of pairs of neighbours instead of single individuals) to derive explicit invasion conditions for
rare mutants in populations with limited dispersal. In such viscous populations, invading mutants form
clusters, and ultimately, invasion conditions depend on the properties of such clusters. Thus there is
selection on a higher level than that of the individual; in fact, invasion conditions define the unit of
selection in viscous populations. We treat the evolution of altruism as a specific example, but the method
is of more general interest. In particular, an important advantage is that spatial aspects can be
incorporated into game theory in a straightforward fashion; we will specify the ESS for a more general
model.

The invasion conditions can be interpreted in terms of inclusive fitness. In contrast with Hamilton’s
model, the coefficient of relatedness is not merely a given genetical constant but depends on local
population dynamical processes (birth, dispersal and death of individuals). With a simple birth rate
function, Hamilton’s rule is recovered: the cost to the donor should be less than the benefit to the
recipient weighted with the coefficient of relatedness. As the coefficient of relatedness is roughly inversely
proportional to an individual’s number of neighbours, benefits to the recipient must be substantial to
outweight the costs, confirming earlier studies. We discuss the consequences for the evolution of
dispersal and outline how the method may be extended to study evolution in interacting populations.
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1. Introduction

When one individual behaves altruistically towards
another, it increases the beneficiary’s fitness at the
expense of its own. To explain how such behavior can
evolve has long been one of the benchmark problems
of evolutionary biology. How can altruists increase in
numbers if non-altruists, who do not pay the cost
associated with altruism, always seem to have the
advantage?

Kin selection was the first mechanism proposed
(Hamilton, 1963, 1964): a gene promoting altruism
can increase in frequency when there is a chance that
the beneficiary also carries a copy, which may happen
if the individuals are related. [Incidentically, the term
‘‘kin selection’’ was coined by Maynard Smith (1964),
Hamilton used the term ‘‘inclusive fitness’’ to describe
the mechanism.] This is the basis of ‘‘Hamilton’s
Rule’’: the cost of an altruistic act must be less than
the benefit to the recipient multiplied by the
‘‘coefficient of relatedness’’. Kin selection models
have contributed greatly to the understanding of
altruism among relatives; sterile workers in social
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).



.    . . 634

T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.
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The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)



.    . . 638

Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The
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F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-
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partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS
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where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.
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To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.
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Group selection can overcome individual selection for selfishness and favour altruism if there is
variation among the founders of spatially distinct groups, and groups with many altruists become
substantially larger (or exist longer) than groups with few. Whether altruism can evolve in populations
that do not have an alternation of local population growth and global dispersal (‘‘viscous populations’’)
has been disputed for some time. Limited dispersal protects the altruists from the non-altruists, but also
hinders the export of altruism. In this article, we use the Pair Approximation technique (tracking the
dynamics of pairs of neighbours instead of single individuals) to derive explicit invasion conditions for
rare mutants in populations with limited dispersal. In such viscous populations, invading mutants form
clusters, and ultimately, invasion conditions depend on the properties of such clusters. Thus there is
selection on a higher level than that of the individual; in fact, invasion conditions define the unit of
selection in viscous populations. We treat the evolution of altruism as a specific example, but the method
is of more general interest. In particular, an important advantage is that spatial aspects can be
incorporated into game theory in a straightforward fashion; we will specify the ESS for a more general
model.

The invasion conditions can be interpreted in terms of inclusive fitness. In contrast with Hamilton’s
model, the coefficient of relatedness is not merely a given genetical constant but depends on local
population dynamical processes (birth, dispersal and death of individuals). With a simple birth rate
function, Hamilton’s rule is recovered: the cost to the donor should be less than the benefit to the
recipient weighted with the coefficient of relatedness. As the coefficient of relatedness is roughly inversely
proportional to an individual’s number of neighbours, benefits to the recipient must be substantial to
outweight the costs, confirming earlier studies. We discuss the consequences for the evolution of
dispersal and outline how the method may be extended to study evolution in interacting populations.

7 1998 Academic Press

1. Introduction

When one individual behaves altruistically towards
another, it increases the beneficiary’s fitness at the
expense of its own. To explain how such behavior can
evolve has long been one of the benchmark problems
of evolutionary biology. How can altruists increase in
numbers if non-altruists, who do not pay the cost
associated with altruism, always seem to have the
advantage?

Kin selection was the first mechanism proposed
(Hamilton, 1963, 1964): a gene promoting altruism
can increase in frequency when there is a chance that
the beneficiary also carries a copy, which may happen
if the individuals are related. [Incidentically, the term
‘‘kin selection’’ was coined by Maynard Smith (1964),
Hamilton used the term ‘‘inclusive fitness’’ to describe
the mechanism.] This is the basis of ‘‘Hamilton’s
Rule’’: the cost of an altruistic act must be less than
the benefit to the recipient multiplied by the
‘‘coefficient of relatedness’’. Kin selection models
have contributed greatly to the understanding of
altruism among relatives; sterile workers in social

†Author to whom correspondence should addressed.
‡Present address: Université P. et M. Curie, Institut d’Ecologie,

Bax t A 7me Etage CC237, 7 Quai St.-Bernard, 75252 Paris cedex 05,
France.
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.
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The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)
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Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The



qR/M
~ qR/M1— —~qM/M

~ qM/M
~

.    . . 640

F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-
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partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS
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where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.
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To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.
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1. Introduction

When one individual behaves altruistically towards
another, it increases the beneficiary’s fitness at the
expense of its own. To explain how such behavior can
evolve has long been one of the benchmark problems
of evolutionary biology. How can altruists increase in
numbers if non-altruists, who do not pay the cost
associated with altruism, always seem to have the
advantage?

Kin selection was the first mechanism proposed
(Hamilton, 1963, 1964): a gene promoting altruism
can increase in frequency when there is a chance that
the beneficiary also carries a copy, which may happen
if the individuals are related. [Incidentically, the term
‘‘kin selection’’ was coined by Maynard Smith (1964),
Hamilton used the term ‘‘inclusive fitness’’ to describe
the mechanism.] This is the basis of ‘‘Hamilton’s
Rule’’: the cost of an altruistic act must be less than
the benefit to the recipient multiplied by the
‘‘coefficient of relatedness’’. Kin selection models
have contributed greatly to the understanding of
altruism among relatives; sterile workers in social
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.
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The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)
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Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The
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F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-
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partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS
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where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.



    647

To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.
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Group selection can overcome individual selection for selfishness and favour altruism if there is
variation among the founders of spatially distinct groups, and groups with many altruists become
substantially larger (or exist longer) than groups with few. Whether altruism can evolve in populations
that do not have an alternation of local population growth and global dispersal (‘‘viscous populations’’)
has been disputed for some time. Limited dispersal protects the altruists from the non-altruists, but also
hinders the export of altruism. In this article, we use the Pair Approximation technique (tracking the
dynamics of pairs of neighbours instead of single individuals) to derive explicit invasion conditions for
rare mutants in populations with limited dispersal. In such viscous populations, invading mutants form
clusters, and ultimately, invasion conditions depend on the properties of such clusters. Thus there is
selection on a higher level than that of the individual; in fact, invasion conditions define the unit of
selection in viscous populations. We treat the evolution of altruism as a specific example, but the method
is of more general interest. In particular, an important advantage is that spatial aspects can be
incorporated into game theory in a straightforward fashion; we will specify the ESS for a more general
model.

The invasion conditions can be interpreted in terms of inclusive fitness. In contrast with Hamilton’s
model, the coefficient of relatedness is not merely a given genetical constant but depends on local
population dynamical processes (birth, dispersal and death of individuals). With a simple birth rate
function, Hamilton’s rule is recovered: the cost to the donor should be less than the benefit to the
recipient weighted with the coefficient of relatedness. As the coefficient of relatedness is roughly inversely
proportional to an individual’s number of neighbours, benefits to the recipient must be substantial to
outweight the costs, confirming earlier studies. We discuss the consequences for the evolution of
dispersal and outline how the method may be extended to study evolution in interacting populations.

7 1998 Academic Press

1. Introduction

When one individual behaves altruistically towards
another, it increases the beneficiary’s fitness at the
expense of its own. To explain how such behavior can
evolve has long been one of the benchmark problems
of evolutionary biology. How can altruists increase in
numbers if non-altruists, who do not pay the cost
associated with altruism, always seem to have the
advantage?

Kin selection was the first mechanism proposed
(Hamilton, 1963, 1964): a gene promoting altruism
can increase in frequency when there is a chance that
the beneficiary also carries a copy, which may happen
if the individuals are related. [Incidentically, the term
‘‘kin selection’’ was coined by Maynard Smith (1964),
Hamilton used the term ‘‘inclusive fitness’’ to describe
the mechanism.] This is the basis of ‘‘Hamilton’s
Rule’’: the cost of an altruistic act must be less than
the benefit to the recipient multiplied by the
‘‘coefficient of relatedness’’. Kin selection models
have contributed greatly to the understanding of
altruism among relatives; sterile workers in social

†Author to whom correspondence should addressed.
‡Present address: Université P. et M. Curie, Institut d’Ecologie,

Bax t A 7me Etage CC237, 7 Quai St.-Bernard, 75252 Paris cedex 05,
France.
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.
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The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)
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Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The
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F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-



    641

partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS
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where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.
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To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.



    637

The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)
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Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The
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F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-
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partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS



    645

where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.
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To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.
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insects and birds helping their parents are textbook
examples.

Group selection, the second mechanism that may
promote altruism, seems rather different. It focuses
not so much on interactions between pairs of
individuals, but on processes in and between spatially
separate subpopulations. If subpopulations with
many altruists fare better than subpopulations with
few (i.e. have a greater contribution to future
generations), the global proportion of altruists may
increase, even if locally the altruists do less well than
the non-altruists (Maynard Smith, 1964; Wilson,
1977; Nunney, 1985). Originally, the term group
selection referred to selection of traits that benefit an
entire species, but this mechanism has been discred-
ited because such populations do not resist invasion
of cheaters. We use the term group selection in the
more limited sense of selection of traits that favour
the members of a subpopulation in a spatially
structured system. Group selection in this more
limited sense is more robust and has been invoked to
explain phenomena like reduced virulence in patho-
gens. Within a host individual fast reproducers
(virulent pathogens) wil replace slow reproducers
(avirulent pathogens), but hosts infected with more
avirulent pathogens may live so long that per-host
transmission of the avirulent pathogens in larger than
that of the virulent pathogens (Eshel, 1977; Levin &
Pimentel, 1981; van Baalen & Sabelis, 1995). Many
models for the origin of life are based on the principle
of group selection (Maynard Smith & Szathmáry,
1995).

An important limitation in our understanding of
the scope of group selection (in the modern sense of
the term) is that it has been modeled mainly for
populations that are subdivided into discrete sub-
populations. To what extent the mechanism also
operates in systems that have a more continuous
spatial structure has been debated. Whether, and if so,
under what conditions, altruism can evolve in such
more continous spatial settings is the main question
of the present article.

1.1.  

Most models for group selection assume a
population that exhibits a synchronized cycle of
colonization and dispersal because such models are
relatively easy to analyse. However, many species do
not have a clear alternation of local population
growth and global mixing. Hamilton (1964) conjec-
tured that the principle might also work in what he
called ‘‘viscous’’ populations, populations without
imposed subdivision but with limited dispersal,
because offspring tend to remain close to their

relatives, any individual is likely to have relatives in
its neighbourhood. An altruistic individual may
therefore convey the benefit (at least partly) to its
relatives. The problem is that population viscosity at
the same time increases the intensity of competition
(for space and/or resources) among relatives, a factor
which is known to impede the evolution of altruism
(Hamilton, 1964).

On the basis of simulations using a cellular
automaton model, Wilson et al. (1992) found that
altruism is favoured only in what they considered to
be a very limited (‘‘unrealistic’’) set of the parameter
domain. An altruistic individual will still benefit from
its altruistic neighbours, but when dispersal is limited,
it will also compete for space with its altruistic
neighbours. In other words, the altruists sit in each
other’s way, making it more difficult for them to
‘‘export’’ their strategy. Taylor (1992a, b) has shown
that if the ‘‘spatial scale of competition’’ is equal to
the ‘‘spatial scale of dispersal’’ the benefit of altruism
and the cost of local competition cancel out exactly.
Taylor claims that this is always the case for viscous
populations, effectively inhibiting the evolution of
altruism.

This conclusion would imply that in viscous
populations the effect of relatedness caused by
population viscosity can be ignored, and that the
quantity that is maximized by natural selection is
therefore ‘‘individual fitness’’ (in which case individ-
uals should maximize their own life-time reproduc-
tion ignoring any effect on neighbours). Our main aim
in this article is to show that this is not true in general,
and that in viscous populations it is not individual
fitness that is maximized by natural selection, but
rather the rate of growth of a cluster of relatives, and
that the effect, though subtle, may be significant.
These results can be interpreted in terms of ‘‘inclusive
fitness’’ (Hamilton, 1963, 1964) where individuals
weigh the effect they have on their neighbours’
reproduction according to the probability that these
are related (i.e. belong to the same cluster of
relatives).

1.2.    

Invasion in viscous populations is a process that is
hard to analyse. Reaction–diffusion models can be
used to address some questions of spatial population
dynamics, but in the case of the evolution of altruism
they are inappropriate. Because they allow infinitely
small densities, even a very small population of
non-altruists will diffuse into the entire spatial
domain, allowing them to exploit the altruists
everywhere. To give the altruists a chance, they
must be protected against exploitation by such
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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T 1
Demographic events

Event* Rate†

Birth So : SS fbS

Ao : AA fbA

Death Sj : oj (j$4o,S,A5) fdS

Aj : oj (j$4o,S,A5) fdA

Migration So : oS fmS

Ao : oA fmA

*‘‘Mirror image’’ events have the same rate.
†The factor f=1/n scales the per capita rates b, d and
m to per-pair rates.

that it allows the inclusion of migration, because such
events change the state of two neighbouring sites at
the same time. This framework is called an ‘‘artificial
ecology’’ (Rand et al., 1995) which is a more general
framework than the classical ‘‘probabilistic cellular
automaton’’ which allows only single site changes at
a time (van Baalen, 1998).

We assume that the per capita rates of mortality (di,
with i=A, S) and migration (mi) are constant, and
that an individual’s rate of reproduction depends on
its neighbourhood. Specifically, we assume that the
rate of reproduction of any individual is increased by
an amount B/n by every altruist in its neighbourhood.
If the individual in question is an altruist itself, its rate
of reproduction is decreased by an amount C,
representing the cost of altruism. (This is actually a
limited definition of altruism. Later on, we will also
analyse the case where the cost of altruism increases
the altruist’s mortality rate instead of decreasing its
birth rate.) Thus, the birth rate of a non-altruist at a
site x with nA(x) altruist neighbours equals

bS(x)= b0 +B
nA(x)

n
(1)

(b0 is the base-line rate of reproduction), whereas the
birth rate of an altruist at the same site would equal

bA(x)= b0 +B
nA(x)

n
−C (2)

In the same environment, a non-altruist will therefore
always have a higher probability to reproduce than an
altruist. Incidentally, note that though we will call Bi

the rate of reproduction or birth rate, in fact it should
be called the rate of reproductive effort: whether or
not an individual actually reproduces depends on
whether it has neighbouring sites that are empty.

Whenever a birth, death or migration event occurs,
the lattice jumps from one discrete state to another,
and as the events are stochastic, the actual state of the
lattice will quickly become unpredictable. One way of
studying the properties of such systems is by
computer simulation. For example, computer simu-
lation could be used to determine whether a small
number of altruists are able to invade a lattice that is
dominated by non-altruists. A disadvantage of this
approach is that large lattices must be simulated for
a long time, to overcome demographic stochasticity
and to allow them to settle at their attractor
behaviour. More importantly, the approach yields no
explicit relationships between parameter values and
the dynamics of the system.

Such analytical insight is possible, however,
through application of techniques developed in
statistical mechanics. The basic idea behind these

is not a genetical quantity (since we are assuming
haploid inheritance, the genetic coefficient of related-
ness can only assume the values zero or one). Instead,
the coefficient of relatedness gives the probability that
a site neighbouring an altruist is occupied by another
altruist. This probability can be calculated from the
characteristic cluster structure (unit of selection).

Finally, we will derive ESS conditions for the more
general case in which there is a continuous range of
strategies, varying in cost and altruistic benefit to
neighbours. As an example, we will discuss the
evolution of competition for light in a population of
plants.

1.5. 

Approximations are never perfect, and for the
simplest correlation equations, the associated errors
can be shown to be significant. However, although we
will discuss the errors introduced in the various
approximation steps, we will focus on the basics of the
technique. A more rigorous error analysis will be
published elsewhere (Morris, 1997).

2. The Model Framework

2.1.  

In this framework space is represented by a
network of sites, in which every site is connected to
n neighbouring sites. Every site is either occupied by
an altruist individual (A), occupied by a non-altruist
individual (S) or it is empty (o).

2.2. 

The state of the lattice will change over time as a
consequence of three types of events, birth, death and
migration. Any of these events may occur with a given
probability per unit of time (i.e. the lattice is
asynchronously updated). Table 1 lists the events as
‘‘pair events’’, events that are not so much associated
with the sites as well as with the connections between
sites. The advantage of this theoretical framework is
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so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1.    

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj=i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj=i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj=i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = s
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. 

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. 

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

F. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3×3 matrix that is fully given in
Appendix B.
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The important observation about M(qA) is that it
depends on the local densities qi=A and thus the pair
frequencies piA. As a consequence, the system of
differential equations is not linear. However, as
Matsuda et al. (1992) have shown, these local
densities equilibrate quickly even when the global
density of a population (i.e. pA) still changes over
time. Denoting the equilibrated local densities by q̃A,
the ‘‘invasion matrix’’ M(qA) will converge to a matrix
with constant elements M	 =M(q̃A), and once that
happens, the invasion dynamics of the altruists is
linear. The long-term dynamics of this linear system
is easy to solve:

pA(t)= cq̃Aelt (11)

where l is the dominant eigenvalue of M	 , q̃A the
normalized eigenvector and c a constant that depends
on initial conditions. With this expression the
invasion condition becomes obvious: if the dominant
eigenvalue of M	 is positive, the altruists will invade;
if it is negative they will die out. The dominant
eigenvalue, or ‘‘invasion exponent’’ (Metz et al., 1992;
Rand et al., 1994), is therefore the relevant fitness
measure.

5.2.    

If the dominant eigenvalue of the invasion matrix
is the relevant fitness measure, the eigenvector q̃A can
be interpreted as the associated ‘‘unit of selection’’:
the altruists do not increase randomly distributed
over the lattice, but as clusters that grow. It is
precisely this cluster structure that is described by the
eigenvector q̃A. Perhaps the best way to understand
the relation between q̃A and cluster structure is to
reverse the argument, and calculate the neighbour-
hood vector from a given spatial distribution.
Consider, for example the cluster of altruists in Fig.
1. It consists of 12 individuals and as every individual
has six neighbours there are 62 pairs with at least one
A; of these 23 are oA pairs, 21 are SA pairs and 28
are AA pairs. Thus, this particular cluster corresponds
to

qA =G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
72

G
F

f

23
21
28

G
J

j
1G

F

f

0.32
0.29
0.39

G
J

j
(12)

In an inverse, slightly more roundabout way, the
vector qA can be used to ‘‘reconstruct’’ the spatial
cluster structure of the mutant.

In a later section we will give an approximation for
the invasion exponent of a rare mutant, but first we
will focus on invasion conditions, which are
considerably more simple.

5.3.  

The simplest case to analyse is that in which the
non-altruists and altruists are identical in every
respect except for the fact that altruists help their
neighbours at their own cost. Then, the basic question
is whether given common (base-line) birth, death and
migration rates (b0, d and m), an altruistic mutant
(with Bq 0 and Cq 0) can invade a non-altruistic
population (with B=C=0). Since birth rate is the
only demographic aspect that can differ between
altruists and non-altruists, it should come as no
surprise that the invasion condition is

bA q bS (13)

This does not imply that we have recovered individual
selection here: birth rate of the altruists depends on
their local density q̃A=A and thus on the altruist’s
cluster structure. (The birth rate of the non-altruists
is b0 because the altruists are globally rare, so that
qA=S 1 0). This implies that the altruists can invade if

B(1−f)q̃A=A −Cq 0 (14)

that is, we have recovered a variant of ‘‘Hamilton’s
Rule’’ in which the coefficient of relatedness estimates
how much of an altruist’s environment consists of
other altruists [given by the factor (1−f)q̃A=A]. This
has to be calculated from the invasion matrix; the full
expression (given in Appendix B) is rather messy.
However, if we assume that B and C are small
compared with b0, we obtain

q̃A=A 1f
b0

b0 + (1−f)m
(15)

If the rate of migration (m) is low, qA=A will be
approximately equal to f=1/n: an altruist will have,
on average, one other altruist in its neighbourhood.
If m increases, qA=A decreases, as expected. Thus, we
can conclude that for the altruists to invade, the
benefit B should be at least n times as large as the cost
C. This, already, suggests that the conditions for
altruism to evolve are rather restrictive, which is in
agreement with Wilson et al.’s (1992) simulations

For the more general case where the other
demographic rates are allowed to differ as well, the
invasion condition becomes

b0 +B(1−f)q̃A=A −C+mA

dA +(1−f)mAq̃o=A
q b0 +mS

dS +(1−f)mSq̃o=S

(16)
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Notice that this is basically a comparison of a
modified ‘‘birth/death’’ ratio of altruists and non-al-
truists, that is, the invasion condition can be written
as

aA

dA
q aS

dS
(17)

where

ai = bi +mi (18)

(aiqi=o gives the probability that an i-individual will
arrive at a given empty site), and

di = di +(1−f)miqo=i (19)

gives the probability that an i-individual will
disappear from a site. This suggests that in order to
maximize its fitness, the altruist cluster should
maximize this birth/death ratio, and therefore it could
stand as a proxy for fitness (see Appendix B for a
more formal derivation). However, the condition can
already be used to infer the invasion conditions for
the case where the cost of altruism is incurred as an
increased mortality rate instead of a decreased birth
rate (which is more in line with the popular image of
an altruist sacrificing itself for its relatives!). If
migration is zero, we obtain

b0 +B(1−f)q̃A=A

d+C
q b0

d
(20)

which leads to

B(1−f)q̃A=A q b0

d
C (21)

This is a variation of Hamilton’s Rule where costs
have to be corrected for background birth and
mortality rates. As background birth rate exceeds
background mortality rate (a necessary assumption
because otherwise the non-altruists would go extinct)
the benefits of altruism should be even larger to allow
the altruists to invade.

6. ESS Conditions

If altruists can invade, the end result may well be
coexistence because non-altruists can easily invade a
system dominated by altruists. However, this does not
imply that local interactions in viscous populations
will inevitably lead to polymorphism. A third type,
intermediate to the pure non-altruist and the
full-blown altruist might be able to invade and
eventually displace both original types.

To determine which strategy is the true ESS
(evolutionarily stable strategy, Maynard Smith &
Price, 1973), a continuous range of options (strategy
set) must be considered. This means that instead of
two parameters, an entire relationship between B and
C must be specified, which can become quite arbitrary
if there is no underlying idea about the sort of
interactions that are involved. A better option is to
construct a more realistic example, as we will do for
a simple model for competition for light among
plants. To outline the approach, however, we will
assume that individuals are characterized by a
strategy s that affects both the benefits they confer to
their neighbours and the costs they incur themselves.

B=B(s)
C=C(s)

(22)

The level of altruism is then a single parameter
strategy (which we assume can be chosen from a
continuous strategy set), and the question becomes
which strategy (or strategies) wil be favored by
natural selection. A first step in answering this
question is to determine which of these strategies is
evolutionarily stable. A strategy s* is an evolutionar-
ily stable strategy (ESS) if no rare mutant with a
deviating strategy s$ s* can invade (Maynard Smith
& Price, 1973), or

ls*(s)Q ls*(s*) (23)

for all s$ s*, where ls*(s) denotes the invasion
exponent (i.e. fitness, Metz et al., 1992; Rand et al.,
1994) of strategy s when s* is the resident strategy.

The only difference with the standard ESS
definition is that the invasion exponent is derived
from the pair equation, and that ‘‘fitness’’ therefore
may refer to a higher level of selection. The basic
approach is the same as that of invasion of altruists
in a non-altruist population: assume that the resident
(now denoted R) is at equilibrium (pRo q 0, pRR q 0),
and trace the dynamics of the mutant (M) when it is
rare. Mutant dynamics is derived in the same way as
in the previous section, the only difference is that it
will depend on the level of altruism of the residents.
(We have relabeled the types R and M, because there
is no longer a qualitative distinction between altruists
and non-altruists.)

The invasion exponent of a mutant close to the
resident is approximated by

ls*(s*+Ds)=
aR + dR

aR + bR + dR 0dR

aR
Da−Dd1 (24)
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where Da= aM − aR and Dd= dM − dR (as shown in
Appendix D). We can immediately see that the
mutant’s invasion exponent is zero if

Da

Dd
=

aR

dR
(25)

Taking the limit Ds : 0, we conclude that the ESS
should satisfy

da

ds
dd

ds

=
aR

dR
(26)

for s= s*. This result is an example of the so-called
‘‘marginal value’’ principle (Charnov, 1976) and
implies that at the ESS the ratio a/d is maximized, as
was already conjectured in the previous section.

If it is assumed that costs decrease birth rate, the
per-capita demographic rates of type i (i=R, M)
become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i −C(si)

di = d (27)

(where sM = s, sR = s*). As in this case mortality does
not depend on s, evolutionary stability implies

daM

ds
=0 (28)

which in turn leads to

dB
ds

(1−f)q̃M=M =
dC
ds

(29)

This is a marginal value analog of Hamilton’s Rule:
ESS conditions, a change in benefits multiplied by the
coefficient of relatedness q̃M=M counterbalances the
associated change in costs. Using results from the
previous section, for a mutant at the invasion
boundary the coefficient of relatedness is given by

q̃M=M =f
bM

bM +(1−f)mM
(30)

where, because we assume the mutant to be close to
the resident,

bM 1 b0 +B(s*)(1−f)q̃R=R −C(s*) (31)

Thus, except when m=0 (no migration), the
coefficient of relatedness of the mutant has to be
calculated from the ‘‘subjective’’ resident density q̃R=R,
which is the positive solution of the resident
equilibrium condition

(b0 + B(s*)(1 −f)q̃R=R −C(s*))(1− q̃R=R)− dR =0

(32)

If we assume that costs increase death rate instead of
decreasing birth rate, the ESS condition becomes
more complex. The per-capita demographic rates of
type i then become

bi = b0 +B(s*)(1−f)qR=i +B(s)(1−f)qM=i

di = d+C(si) (33)

The resident equilibrium then is the solution of

(b0 +B(s*)(1−f)q̃R=R)(1− q̃R=R)(dR +C(s*))=0

(34)

and the ESS should satisfy

dB
ds

(1−f)q̃M=M =
bR

dR

dC
ds

(35)

This is yet another variant of Hamilton’s Rule, one in
which the costs have to be corrected for birth, death
and migration. Again other variants would arise if the
benefits of altruism affected mortality rate instead of
birth rate, which would be the case if individuals help
each other to survive, for example by contributing to
a communal defense against predators. Nonetheless,
the basic approach remains the same. The example
serves to warn that we should be careful, and specify
as precisely as possible how ‘‘costs’’ and ‘‘benefits’’
affect demographic rates. It will make a difference if
costs affect the rate of mortality instead of the rate of
reproduction, even if measured in the same unit.

7. Competition for Light

Discussions of the evolution of altruism will remain
rather academic if ‘‘costs’’ and ‘‘benefits’’ remain
unspecified. We will work out a very simple example
for the competition for light among plants to
demonstrate the principle, and to show how to derive
expressions for costs and benefits in a concrete
example. Consider a plant species that reproduces
entirely by vegetative reproduction, or a species that
has a very narrow seed distribution. The only way for
such plants to increase in frequency is to produce
offspring into neighbouring sites as the individuals
themselves cannot move (i.e. m=0). Because all
demographic processes are local, the dynamics of
such plants have been studied using cellular
automaton models (Crawley & May, 1987; Hendry &
McGlade, 1995), but lend themselves also very well to
a correlation dynamics approach (Harada & Iwasa,
1994).

The basic question we will address here is how
much the plants should invest in vertical growth. The
advantage of being tall is an increased amount of light
capture, at the expense of neighbouring plants. The
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F. 3. Schematic representation of light capture by a mutant
(shaded) plant. A neighbouring site can either be occupied by
another mutant plant (shaded), by a resident plant (white) or be
empty. Assuming the average amount of light captured is the
average for the three configurations, it will depend on the height
of mutant and resident plants but also on the average angle of the
sun and the horizontal surface of the plants (assumed constant).

bours’’. The only conceptual difference with the basic
model is that individual costs incorporate a benefit
because an altruistic plant saves on structural growth,
which implies that there is an optimum height ho, that
minimizes the individual costs C(h), given by

dC
dh

=0\
dK
dh

=L (38)

If the plant is surrounded by relatives, however, a
plant can confer benefits to its neighbours—and thus
to its relatives among them—by growing less tall. the
optimum height h for a cluster of relatives should
satisfy

dB
dh

(1−f)qM=M −
dC
dh

=0 (39)

which, translated in terms of marginal values becomes

dK
dh

=L(1− (1−f)q̃M=M) (40)

As the optimum is associated with a smaller marginal
cost, the mutant plants should grow less tall. How
much depends on the shape of the cost function, and
the effect may be small.

The ESS depends on the cost function K(h), the
number of neighbouring sites n and the intensity of
competition for light. Of these, the cost function will
be most difficult to assess. A more serious flaw of this
simple model is that it lacks phenotypic plasticity. A
full model should incorporate this because in plants
growth is strongly influenced by competition for light;
seeds may not even be able to germinate on sites
surrounded by tall neighbours. The model would then
be more complex, but the same basic approach could
be used to assess ESS allocation to growth and
reproduction.

8. Discussion

We started analysing a model to study group
selection in viscous populations, and we ended up
with a number of variations on Hamilton’s Rule. If
anything, this strengthens the notion that group
selection and kin selection are two sides of the same
coin (Grafen, 1984; Queller, 1994).

Traditionally, models for group selection assume a
sharply subdivided environment. In many cases this is
a reasonable assumption, for example when resources
are patchily distributed. However, in many other
cases subdivisions are not sharp, or even absent
altogether. Just think of a continuous vegetation:
although spatial structure may not be apparent, it is
definitely not a ‘‘well-mixed’’ system: individuals do
not move around, many plants reproduce (at least

direct disadvantage is that the resources invested in
growth cannot be used for seed production or ramet
growth, but there is also the indirect disadvantage in
that neighbouring relatives may be overshadowed.

Assume that after germination plants quickly grow
to a (genetically determined) height h* and then start
producing seeds (or ramets) that disperse to
neighbouring sites. Now consider a mutant that
grows to a different size h. For simplicity we will
assume the amount of light that is captured by a plant
to be a constant that is offset by an amount
proportional to the size difference with each of its
neighbours (an empty site is counted as a plant of size
0, see Fig. 3). One may assume that the costs of being
tall reduce seed production rate because resources
must be allocated to structural growth and mainten-
ance. Then, the seed production rate of a plant
belonging to a cluster of mutants that grow to a
height h in an environment dominated by plants of
height h* can be modeled as

bM =B0 +Lh(1−f)q̃o=M +L(h− h*)(1−f)q̃R=M

(36)

where b0 is base-line seed production, L is a
proportionality constant that measures competition
for light between two neighbouring plants (L will
depend on the number of neighbouring sites, average
angle of sun rays and so forth), and K(h) measures the
cost of maintaining size h.

Using qo=M =1− qR=M − qM=M we recover our basic
model for continuous strategies, where

B(h)=−Lh

C(h)=K(h)−Lh (37)

and all of our results from the section on ESSs pertain
to this plant model. The reason for the odd sign
reversal is that ‘‘being altruistic’’ in this setting is the
same as ‘‘growing less tall to benefit your neigh-
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partly) vegetatively and even seeds often do not
disperse far. Hamilton already surmised that kin
selection would occur in such systems as well. Limited
dispersal leads to ‘‘viscous populations’’, which
means that individuals are likely to have relatives in
their neighbourhood. Kin selection would then
predict that altruism can evolve.

However, it turns out that it is not so simple.
Limited dispersal indeed leads to clustering of
relatives, but these relatives not only interact, they
compete with each other as well. Altruists, for
example, increase each other’s birth rate, but only to
fill the same empty sites in the cluster’s neighburhood.
Thus, clustering of relatives in itself is not sufficient
for kin selection to favor altruistic traits. For a rare
mutant to invade successfully, it is essential that it is
able to ‘‘export’’ its traits, i.e. a cluster of relatives
should be able to grow and displace individuals
belonging to the resident population (Wilson et al.,
1992). Here limited dispersal becomes a counteracting
force, as mutants tend to sit in each other’s way. This
is summarized in the statement that it is only when the
‘‘scale of dispersal’’ is larger than the ‘‘scale of
regulation’’ (i.e. local competition) that altruists can
invade (Kelly, 1992, 1994).

Taylor (1992a, b) argued that these scales are
identical in purely viscous populations, and that
altruism therefore cannot evolve in this setting.
However, the picture is not as bleak as that. Using a
correlation equation approach, Matsuda et al. (1992)
and Harada et al. (1995) have shown that altruists
may invade. Thus, in a viscous population, the scales
of dispersal and interaction are not identical, even if
they are very close. If the scales are close, spatial
spread is a slow process, and on a finite lattice (as used
in computer simulations) cluster growth may easily
fail for stochastic reasons. Nonetheless, in the long
run the altruists will invade, even if it requires many
false starts.

In this article, we studied invasion dynamics in
more detail, to show how the fitness of a rare mutant
(its invasion exponent) is closely linked to the
characteristic cluster structure of the mutant, given by
the eigenvector of the mutant’s invasion matrix.
Invasion in a viscous system implies growth of such
clusters and, eventually, it is the properties of such
clusters as coherent whole that determines whether or
not a particular mutant will invade. Invasion analysis
of the correlation equations leads to a natural
definition of the ‘‘unit of selection’’ in viscous
populations.

This is not to say that individuals are not
important. Indeed, without individuality the whole
process would not work, as selfish nano-individuals

would spread everywhere. Thus, the evolution of
altruism requires that there is a ‘‘unit of population
dynamics’’ as well, i.e. the individual. Recall that
standard group selection also requires a unit of
individuality: founders of populations have to be
discrete individuals, because otherwise variation
among groups will be lost (Goodnight, 1992). A
condition for the evolution of altruism is then that the
unit of selection should be larger than the unit of
population dynamics.

From the unit of selection, the coefficient of
relatedness can be calculated, and this turns out to be
roughly proportional to the inverse of the number of
neighbours (n). Thus for the altruists to invade, the
total benefit to neighbours should be greater than n
times the cost (Hamilton’s rule). This suggests that
altruism does not easily evolve in viscous populations.
If the altruists invade, it is because their higher net
rate of reproduction rate leads to a higher local
density than the non-altruists, which allows them to
diffuse outward, into the domain dominated by the
non-altruists. Incidentally, this points to the reason
why altruists fail in Taylor’s (1992a) model: for
mathematical convenience he set a parameter called
‘‘population elasticity’’ to unity. This implies that the
lattice is completely filled, and that the altruists
therefore cannot benefit from a higher local density
(see also Kelly, 1994). Perhaps the most simple way
to understand how this density effect works is to
consider a harsh world where background birth rate
is so low that non-altruists simply cannot maintain
themselves on their own. Then only altruists can
invade the empty world, due to the local Allee-effect
that is generated by their mutual help.

8.1.  

The results presented in this article are based on the
assumption that the standard pair approximation
holds. However, this approximation ignores some
aspects that may be important. For example, one can
see immediately that the cluster shown in Fig. 1 has
qA=oA q 0 (there are many oA-pairs where the o is
neighboured by another A) whereas the standard pair
approximation assumes qA=oA =0. This implies that
there will be within-cluster competition for space, a
phenomenon that the standard pair approximation
ignores. At the same time, however, the average
altruist has more altruists in its neighbourhood (and
thus receives more help) than the standard pair
approximation predicts (that is, the spatial segre-
gation of altruists and non-altruists is more
pronounced). Which of the two mechanisms will
predominate is not a priori clear.
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It should be realized, however, that the intensity of
these mechanisms depends on the geometrical
structure of the lattice. Most simulation studies
assume regular, square two-dimensional lattices, with
neighbourhood structures of either four or eight
neighbours. However, it is also possible to construct
random lattices, with the same number of neighbours
per site but with a random structure. Then, one ends
up with a probabilistic cellular automaton or artificial
ecology in which the local rules are the same, but
which will show different dynamics. Compare for
example, the two n=3 lattices in Fig. 4. In the
regular lattice [Fig. 4(a)], neighbour’s neighbours
start overlapping only three links away, which will
introduce correlations not accounted for in the
standard pair approximation. In contrast, such
overlap is not present in a random lattice, so there the
standard pair approximation seems justified.

To a certain extent, lattice structure is incorporated
in the following closure assumption:

qh=ij 1 qh=i(1− u+ ughj)thij (41)

F. 5. Critical benefit/cost ratio (B/C) for the evolution of
altruism as a function of lattice regularity u (u gives the proportion
of triplets in triangular, as opposed to open, configuration). The
critical ratio is shown for different migration rates m(=mS =mA).
Background birth rate b0 =2, mortality rate dS = dA =1.

where ghj = phj/(phpj) denotes the correlation between
i and j sites, and thij is a correction factor to ensure
that ahqh=ij =1. This approximation basically assumes
that a proportion u of all triplets are in a closed,
triangular configuration. Then, the j and the h may be
direct neighbours, which introduces the extra
correlation ghj. See Van Baalen (1998) for a more
detailed discussion, and see Appendix C for an outline
of how to calculate thij. The parameter u can be
interpreted as measuring the regularity of the lattice:
it gives an estimate of the overlap among i and j’s
neighbours and this depends on the geometrical
structure of the lattice. Notice that setting u=0 leads
to the uncorrected, standard pair approximation.
Thus, the classical pair approximation is expected to
work best for random lattices. This is borne out by
comparing simulations with the improved approxi-
mation (see van Baalen, 1998).

Closure condition, eqn (41), makes the dynamical
system more complex. We will not present a full
analysis, but we will show some preliminary results.
Given the equilibrium of the non-altruists (see
Appendix C) the ‘‘relatedness coefficient’’ (1−f)qA=Ao

of an altruist close to the non-altruists (i.e. B and C
are both small in absolute terms) can be quickly
calculated). From this relatedness coefficient then
follows the critical benefit/cost ratio for the evolution
of altruism. As can be seen in Fig. 5, the critical
benefit/cost ratio decreases when the lattice becomes
more regular. Thus, the evolution of altruism is more
easy on regular lattices than on random lattice. This
suggests that the benefits of stronger clustering (more
help) outweigh the disadvantages (within-cluster
competition for space).

F. 4. Examples (a) of a regular n=3 lattice, and (b) of a
random n=3 lattice. In both graphs, a central pair is indicated
(black) with their neighbours up to two links away (grey).
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8.2.  

In viscous populations altruism can evolve, but
only if the benefits considerably outweigh the costs.
This suggests that altruistic behavior would evolve
only rarely, or, in more general terms, kin selection is
not very intense in viscous populations.

The reason for this is that single populations do not
exhibit very interesting spatial dynamics: they
basically saturate the lattice (roughly analogous to the
growth towards carrying capacity in the logistic
population growth model) and do not produce large
scale structures. Adding other trophic levels will
change that. For example, spatial predator–prey
models will give rise to more complex spatial patterns,
ranging from chaotic structures to highly structured
spiral patterns (Hassell et al., 1991; Boerlijst et al.,
1993). Such large-scale structures may form higher-
level units of selection, because it is the properties of
such structures that may determine the outcome of
natural selection. In the case of spiral hypercycles, for
example, faster rotating spirals displace slower
rotating ones (Boerlijst et al., 1993). In host–parasite
systems, spatial structure may limit the evolution of
transmissibility: when a cluster of hosts succumbs
before it mingles with neighbouring clusters, the
parasites that ‘‘exploit’’ the cluster go extinct too
(Rand et al., 1995). The spatial dynamics of
host–parsite systems may also provide an explanation
for the evolution of sex: asexual hosts have an initial
advantage because they do not pay the ‘‘two-fold
cost’’, but succumb in the longer term to parasites
when their cluster grows too big (Keeling & Rand,
1995).

Using correlation dynamics models to derive the
units of selection is a promising avenue of research to
obtain more analytical insight into kin selection in
multitrophic systems. For example, the unit of
selection in a parasite population is affected by host
traits like the host’s rate of reproduction, a parameter
that will not affect parasite evolution in a well-mixed
system (in absence of vertical transmission). Parasites
that reduce their transmissibility in order to increase
their host’s rate of reproduction may then invade a
parasite population that sterilizes its hosts (M. van
Baalen, unpublished results).

8.3. 

In this article, we assumed that dispersal rate was
a given constant, the same for both altruists and
non-altruists. Dispersal, however, is subject to natural
selection as any other character. There is an
important connection with the evolution of altruism:
natural selection will favor non-altruists that disperse

as fast as possible, but for invading altruists there may
be an optimal dispersal rate, as altruists depend on
each other and must therefore ‘‘keep in touch’’.

However, such an optimum dispersal rate is not an
ESS. Would the altruists be the resident population
there is no penalty associated with losing contact with
relatives, and increased dispersal is selected for. But
then, as the population becomes more and more
well-mixed, less altruistic strategies are favored again.
Therefore if altruism and dispersal are evolving
simultaneously, the end result (ESS) may be a rapidly
mixing non-altruistic strategy. However, then, there is
scope for the altruists again: if the benefits of altruism
are large enough, that is, if there exists a strategy s
that satisfies

C(s)QB(s)(1−f)q̃M=M (42)

a cluster of altruists that stay together may invade
(recal that the coefficient of relatedness q̃M=M

approximate f=1/n if mA =0).
Thus there may be also a second type of outcome,

coexistence of rapidly moving non-altruists (mS large),
and sedentary altruists (mA =0). This is an interesting
result, because strategy sets of simple continuous
shapes usually lead to monomorphic ESSs. Here
divergence into discrete types is made possible by the
association of different expansion and interaction
strategies. This suggests an interesting hypothesis for
the evolution of multicellularity: multicellularity is
not an inevitable consequence of ‘‘the quest for
progress’’ but actually the result of a breakup of an
original ‘‘slimy’’ ancestral population of unicellular
organisms. In the end some unicellular lines
specialized to divide and migrate as fast as they can,
whereas others clung together to benefit from close
cooperation and eventually evolved into multicellular
organisms. The present analysis suggests that these
benefits should be substantial.
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APPENDIX A

The Full System

The full system of equations reads

dpSo

dt
=(bS +mS)fqS=oopoo

−[fbS +f(bS +mS)qS=oS +f(bA +mA)qA=oS + ds

−fmSqo=So]pSo

+[dS +fmSqo=SS]pSS

+[dA +fmAqo=AS]pSA

dpSS

dt
=2[fbS +f(bS +mS)qS=oS]pSo

−2[dS +msfqo=SS]pSS

dpAo

dt
=(bA +mA)fqA=oopoo (A.1)

− [fbA +f(bA +mA)qA=oA +f(bS +mS)qS=oA + dA

+fmAqo=Ao]pAo

+[dA +fmAqo=AA]pAA

+[dS +fmSqo=SA]pSA

dpAA

dt
=2[fbA +f(bA +mA)qA=oA]pAo

−2[dA +fmAqo=AA]pAA

dpAS

dt
=(bS +mS)fqS=oApAo

+(bA +mA)fqA=oSoSo

−[dS +fmSqo=SA + dA +fmAqo=AS]pAS
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where f=1−f=(n−1)/n. Symmetry relations
imply pij = pji, and the fact that all frequencies sum to
one implies

poo =1−2(pSo + pAo + pAS)− pSS − pAA (A.2)

It should be kept in mind that the events of birth,
death and migration may be functions that depend on
the individuals’ environment. The vital rates bi,di and
mi must therefore be averaged over the environments
of all the individuals of type i. Since we assume that
death and migration rates are environment-indepen-
dent, these average rates are equal to the event rates
di and mi. Birth events do depend on the individual’s
environment, however, and care must be taken
that these averages are taken properly (Morris, 1997),

bi = �bS(x)�i = b0 +B�nA(x)
n

�i −Ci (A.3)

(where �f(x)�i denotes the mean of f(x) over all sites
x occupied by type i), which thus depends on the
mean proportion of altruists in the neighbourhood of
type i. This procedure leads to the following result.
An individual of type i has on average nqA=i altruist
neighbours, and therefore receives an expected
amount of benefit (B/n)(nqA=i)=BqA=i.

However, eqn (A.3) is not yet the correct expression
to substitute in the differential equations. These rates
depend on the mean environment of individuals that
actually reproduce (that is, on the environment of the
i where io : ii events occur); such individuals
therefore have at least one empty site among their
neighbours, which reduces the potential benefit they
receive. Averaging over all io pairs (instead of over all
i sites, see van Baalen, 1998) leads to the better
estimation

bS = b0 +B(1−f)qA=So

bA = b0 +B(1−f)qA=Ao −C
(A.4)

where the factor 1−f=(n−1)/n takes into account
the fact that at least one of its neighbouring sites is
empty. These values are to be substituted into the
differential equations for the pij.

The structure of the system of equations becomes
more clear if one defines for convenience

ai =f(bi +mi)

bi =fbi +f(bi +mi)qi=oi

dij = di +fmiqo=ij (A.5)

We then can write the system of equations as

dpSo

dt
= aSqS=oopoo

−[bS + aAqA=oS + dSo]pSo

+ dSSpSS

+ dASpSA

dpSS

dt
=2bSpSo −2dSSpSS

dpAo

dt
= aAqA=oopoo (A.6)

− [bA + aSqS=oA + dAo]pAo

+ dAApAA

+ dSApSA

dpAA

dt
=2bApoA −2dAApAA

dpAS

dt
= asqS=oApAo + aAqA=oSpSo

−[dSA + dAS]pAS

The system of equations depends on conditional
probabilities involving triplets (qi=ab). As we do not
want to extend the analysis to the dynamics of
triplets, we have to ‘‘close’’ the system, by expressing
the qi=ab in terms of pair frequencies. In the main text
of the article, we assume the standard pair
approximation

qi=ab 1 qi=a (A.7)

In Appendix C we briefly discuss a more elaborate
closure assumption.

APPENDIX B

Invasion

When resident S is at equilibrium, pSo and pSS (and
hence poo) are given and constant in time, as are all
qh=i and qh=ij with h,i,j$4o, S5.

A (globally) rare population of altruists (pAo, pAS,
pAA�pSo, pSS) will not affect the resident dynamics.
Effectively, this allows us to decouple the mutant’s
invasion dynamics from the resident’s dynamics. In
contrast to a well-mixed system, in a viscous system
a mutants’s invasion dynamics is governed by more
than a single equation. Since we limit ourselves to
derive equations for pairs, the mutant’s invasion
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dynamics is governed by three equations, for pAo, pAS,
pAA (by definition, poA = pAo).

Using qA=oopoo = qo=oApoA, qA=oSpoS = qS=oApoA, and
qo=oA =1− qS=oA − qA=oA, the differential equations for
pAo, pAS and pAA can be written in matrix form,

d
dt

G
F

f

pAo

pAS

pAA

G
J

j
=M G

F

f

pAo

pAS

pAA

G
J

j
(B.1)

with

M=G
F

f

aA(1− qA=oA)− bA −(aS + aA)qs=oA − dAo

(aS + aA)qS=oA

2bA

dSA

− dSA − dAS

0

dAA

0
−2dAA

G
J

j (B.2)

This matrix can be entirely expressed in terms of
local densities qi=A, even with the improved approxi-
mation proposed in Appendix C. Here, however, we
will derive the invasion condition assuming the
standard approximation is valid. The same approach
can also be applied to improved approximations, but
then it becomes more laborious.

The invasion exponent and the unit of selection
have to be calculated simultaneously. As explained in
the text, the most compact way to represent this set
of simultaneous equations is

M(qA )qA = lqA (B.3)

From the invasion matrix, the normalized eigenvec-
tor that is associated with an eigenvector l=0 should
satisfy

G
F

f

qo=A

qS=A

qA=A

G
J

j
=

1
K

G
G

G

F

f

dAA

(aS + aA)
dAA

dAS + dSA
qS=oA

bA

G
G

G

J

j
(B.4)

with

K= dAA +(aS + aA)
dAA

dAS + dSA
qS=oA + bA (B.5)

In the general case, this is a complicated set of
equations, because ai, bi and dij may all depend on
local densities qh=ij, which all have to be expressed in
terms of the qh=i.

In principle, we can work everything out using
improved pair approximations, such as proposed in
Appendix C. However, here we will work out the

invasion condition assuming that the standard pair
approximation holds Then, dij = di, which simplifies
the analysis considerably. With improved approxi-
mations, the analysis is similar but more laborious.

Though it should be possible to calculate fitness (l)
and unit of selection (qA) for any arbitrary mutant,
explicit solutions, if obtainable at all, tend to become
rather messy. If the demographic rates are density-in-
dependent constants, the characteristic equation that
must be solved is cubic, and more complex cases (such
as the one considered here, where birth rates depend
on qA=A may require solution of 4-th order equations
or higher. Invasion boundaries, manifolds in par-
ameter space defined by l=0 are easier to analyse.

The invasion condition l=0 implies that the
invasion matrix is singular (=M(qA)==0), which leads
to the following expression describing the ‘‘invasion
boundary’’

(aA − dA)(dA + dS)− dA(aA + aS)qS=o =0 (B.6)

Because we can define a ‘‘mutant’’ that is identical
to the resident (i.e. a degenerate ‘‘altruist’’ character-
ized by B=0 and C=0), we can use this expression
to solve the equilibrium of the resident. For such a
mutant A* we know that

aA* =f(bA* +mA*)=f(bS +mS)= aS (B.7)

and (since qo=A* = qo=S as we will show below),

dA* = dA* +fmA*q̃o=A* = dS +fmSq̃o=S = dS (B.8)

This mutant will have an invasion exponent of exactly
zero and should therefore be on the invasion
boundary determined by eqn (B.6). This can be used
to solve qS=o, yielding

q̃S=o =1−
dS

aS
(B.9)

which can then be substituted back into eqn (B.6).
(Notice that this equation gives us also
qo=o =1− qS=o.) This gives the following characteriz-
ation of the invasion boundary

(aA − dA)(dA + dS)− dA(aA + aS)01−
dS

dS1=0 (B.10)

which can be simplified into

(aA + aS)(aSdS − dAdS)=0 (B.11)

This leads to the ‘‘birth–death’’ ratio condition eqn
(17) that is discussed in the main text.
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To calculate aA and dA, we have to know its local
densities qi=A. Under the pair approximation, eqn (B.4)
becomes

2q̃o=A

q̃S=A

q̃A=A3= 1
K
G
G

G

F

f

dA

(aA + aS)
dA

dA + dS
q̃S=o

bA

G
G

G

J

j
(B.12)

where K again is a normalizing factor. For an altruist
that is close to the resident (B and C small in absolute
terms) we obtain

q̃o=A =
dS

aS + bS

q̃S=A =
aS − dS

aS + bS
(B.13)

q̃A=A =
bS

aS + bS

Note that this is in agreement with the assertion
that for the degenerate altruist qo=A* = qo=S, because

q̃o=S = q̃o=A*\

q̃o=S =
dS

aS + bS
=

dS +fmSq̃o=S

f(bS +mS)+fbS
\ (B.14)

q̃o=S =
dS

bS

which is the equilibrium condition derived earlier.

APPENDIX C

Correction for Regular Lattices

In this appendix, a very short outline of the
improved pair approximation [eqn (41)] will be given.
A more extensive discussion can be found in van
Baalen (1998). If, a fraction u of the triplets is in a
closed, triangular configuration, we can write

qh=ij = qh=i(1− u)T{hij + ughjTrhij) (C.1)

where ghj = phj/phpj stands for the pair correlation, and
T{hij and Trhij stand for the triple correlations of open
and closed triangles, respectively. The triple corre-
lations are defined by p{hij = phpipjghigijT{hij and
prhij = phpipjghigijgihTrhij (in other words triple corre-
lations are the corrections one needs to apply to
estimates based to pairs to obtain the ‘‘right’’ values.)

The pair correlations can be calculated from the
pair and singlet frequencies, but the triple correlations
are essentially unknown. Closing the system thus boils
down to assuming a value for these triple correlations.
Assuming no triangular triplets (corresponding to a
random lattice) and the absence of triple correlations

(i.e. T{hij =1) leads to the standard pair approxi-
mation. A more elaborate approximation is obtained
if it is assumed that both types of triple correlation are
equal (i.e. T{hij =Trhij) and estimated by thij. Then we
obtain a series of expressions

qh=ij 1 qh=i(1− u+ ughj)thij (C.2)

Here, thij cannot be simply set to unity, because this
causes the qh=ij to violate the consistency condition

s
h= o,A,S

qh=ij =1

(C.3)

A possible solution to this consistency condition is

thij =g
F

f

1
1
qj=i

(1−ah$ jqh=i((1− u)+ ughj))

if h$ j
if h= j

(C.4)

After substitution of these conditional probabilities
into the differential equations for pairs, the equi-
librium of the resident non-altruists and the invasion
conditions can be solved using a symbolic math-
ematics package like Mathematica. This is how we
produced Fig. 5.

APPENDIX D

ESS Conditions

In this appendix we will derive the invasion
exponent ls*(s) of a rare mutant (M) with strategy s
that does not differ much from the resident strategy
s*. [In our case, s=(B,C).] The resident population
(R) with strategy s* is assumed to be at equilibrium.

The invasion exponent is the dominant eigenvalue
of the matrix

M= 2aM − bM −(aR + aM)qR=o − dM

(aR + aM)qR=o

2bM

dR

− dR − dM

0

dM

0
−2dM3 (D.1)

Right and left eigenvalues of this matrix are

ṽ=G
G

G

F

f

dM + 1
2l

aR + aM

aR

dM + 1
2l

dR + dM + l (aR − dR)

bM

G
G

G

J

j
(D.2)
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and

ũ=01 dR

dR + dM + l

dM

2dM + l1 (D.3)

where l= ls*(s) so that

ls*(s)=
ṽM	 ũ
ṽũ

(D.4)

Now consider a mutant whose strategy differs little
from the residents’ strategy; the resulting changes in
pair-related rates, Da, Db and Dd, will therefore be
small. We can decompose the matrix and its
eigenvectors in a constant part (depending only on the
resident strategy), a part that depends only linearly on
the changes caused by the mutant’s strategy change,
and higher order terms (which we will subsequently
ignore):

M	 =M*+DM
ũ= u*+Du+h.o.t (D.5)
ṽ= v*+Dv+h.o.t

Some algebra shows that

u*=
G
F

f

dR

aR − dR

bR

G
J

j

and

Du=G
G

G

F

f

Dd

0Da

aR
+

Dd

dR1 (aR − dR)

Db

G
G

G

J

j

(D.6)

and

v*= (2 1 1) and Dv=(0 −
Dd

2dR
0) (D.7)

so that Du and Dv vanish if Da, Db and Dd go to zero.
If we expand the expression for the invasion exponent
while keeping only the linear terms, we obtain

ls*(s*+Ds)1 v*M*u*
v*u*

+
v*DMu*

v*u*

+
DvM*u*

v*u*
+

v*M*Du
v*u*

(D.8)

which simplifies to

ls*(s*+Ds)1 v*DMu*
v*u*

(D.9)

because v*M*= 0T and M*u*= 0. Some more
algebra then leads to

ls*(s*+Ds)1 aR + dR

dR + bR + dR 0dR

aR
Da−Dd1 (D.10)

This gives us the actual rate of invasion (or extinction
of the mutant, where factor in front of the ‘‘selection
differential’’ represents the slowdown caused by
spatial expansion.


