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ABSTRACT: Sigmoid functional responses may arise from a variety
of mechanisms, one of which is switching to alternative food sources.
It has long been known that sigmoid (Holling’s Type III) functional
responses may stabilize an otherwise unstable equilibrium of prey
and predators in Lotka-Volterra models. This poses the question of
under what conditions such switching-mediated stability is likely to
occur. A more complete understanding of the effect of predator
switching would therefore require the analysis of one-predator/two-
prey models, but these are difficult to analyze. We studied a model
based on the simplifying assumption that the alternative food source
has a fixed density. A well-known result from optimal foraging theory
is that when prey density drops below a threshold density, optimally
foraging predators will switch to alternative food, either by including
the alternative food in their diet (in a fine-grained environment) or
by moving to the alternative food source (in a coarse-grained en-
vironment). Analyzing the population dynamical consequences of
such stepwise switches, we found that equilibria will not be stable
at all. For suboptimal predators, a more gradual change will occur,
resulting in stable equilibria for a limited range of alternative food
types. This range is notably narrow in a fine-grained environment.
Yet, even if switching to alternative food does not stabilize the equi-
librium, it may prevent unbounded oscillations and thus promote
persistence. These dynamics can well be understood from the oc-
currence of an abrupt (or at least steep) change in the prey isocline.
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Whereas local stability is favored only by specific types of alternative
food, persistence of prey and predators is promoted by a much wider
range of food types.

Keywords: predator-prey dynamics, alternative food, switching, optimal
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Predators will switch to alternative food when the density
of their preferred prey is low (Murdoch 1969). In popu-
lation dynamical studies, switching is usually modeled as
a sigmoid (Holling’s Type III; Holling 1959) functional
response. Because sigmoid functional responses can sta-
bilize a predator-prey equilibrium in Lotka-Volterra mod-
els (Takahashi 1964; May 1974; Murdoch and Oaten 1975),
it is argued that alternative food may play an important
role in promoting the persistence of predator-prey systems.

Although it is often claimed that a sigmoid functional
response may result from adaptive decisions, many opti-
mal foraging models predict functional responses of other
shapes (Holt 1983; Stephens and Krebs 1986; McNamara
and Houston 1987). For example, Charnov’s (1976) well-
known model of optimal diets predicts a stepwise switch
from a diet of profitable prey only to a mixed diet including
alternative food (see also Werner and Hall 1974). The
consequences of such stepwise switches for predator-prey
(or host-parasitoid) population dynamics have been in-
vestigated by Gleeson and Wilson (1986), Colombo and
Kfivan (1993), Fryxell and Lundberg (1994, 1997), K¥ivan
(1996, 1997b, 1998), Kiivan and Sirot (1997), Sirot and
Kfivan (1997), Kiivan and Sikder (1999), and Genkai-Kato
and Yamamura (1999).

Fryxell and Lundberg (1994, 1997) have demonstrated,
using numerical simulation studies of one-predator/two-
prey models, that predators will switch to low-quality prey
only when they have reduced the more profitable prey to
low levels. At times when prey density is low, such a switch
will diminish predation pressure on the profitable prey
while at the same time buffering predator density. Together
these two factors put an upper limit to the oscillations of
the system composed of the predators and the profitable

prey.



Using control theory, Kiivan (1996) confirmed these
results by showing that if the unprofitable prey species is
close to its carrying capacity (and therefore not strongly
regulated by the predator), the stepwise switch may lead
to reduced fluctuations in the three-species system. In ad-
dition, Kfivan and Sikder (1999) showed that switching
increases the range of parameters for which one-predator/
two-prey systems are persistent; populations may fluctuate
but no population goes extinct in the long run.

In this article, we will extend on these studies by fo-
cusing on the dynamics of the predator and the profitable
prey. The main difference from previous studies is that we
assume that the alternative food has no dynamics of its
own, that is, alternative food is always available in constant
amounts, unaffected by consumption. This simplification
is justified for many arthropod predators because they can
rely on plant-provided alternative food sources such as
pollen or nectar, the availability of which is unlikely to be
influenced by the predator’s consumption (van Rijn and
Sabelis 1993; van Rijn and Tanigoshi 1999; Eubanks and
Denno 2000).

The advantage of this approach is that it reduces the
dimension of the system from three to two, which allows
the use of phase-plane analysis to study the consequences
of the availability of alternative food. We will show that a
nondynamic alternative leads to similar conclusions as are
obtained from one-predator/two-prey models that we dis-
cussed above. Moreover, the simplification allows us to
obtain analytical insight into how the properties of alter-
native food affect population dynamics in terms of stability
of the equilibrium and persistence of predator and prey.

Usually, both top-down and bottom-up regulation (lo-
gistic density dependence in prey growth) are considered
(e.g., Fryxell and Lundberg 1994, 1997; Kfivan 1996).
Bottom-up control (which has a strong stabilizing effect)
may mask the effect of switching. Therefore, in this ar-
ticle, we do not consider bottom-up regulation; our food
webs assume only top-down control.

A stepwise switch is predicted by optimal foraging the-
ory assuming that predators are perfect and have complete
information. In reality, the switch is likely to be more
gradual (either because of imperfect switching or because
there is genetic variation in the population). We will there-
fore investigate the consequences of both stepwise and
more gradual switches.

The classical optimal foraging framework (see MacArthur
and Pianka 1966; Stephens and Krebs 1986) assumes that
prey and alternative food items are homogeneously mixed
(fine-grained environments). Often, however, the alternative
food and prey are spatially segregated. If this is the case,
the decision for a predator becomes different: if it searches
for alternative food, it will no longer encounter prey (and
vice versa). Optimal foraging decisions in such coarse-
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grained environments lead to the “ideal free distribution”
(Fretwell and Lucas 1970): the predators will distribute
themselves in such a way that no individual is better off by
changing its searching strategy. Kfivan (19974) has con-
cluded that optimal foraging strategies of predators in a
system with two spatially separated prey species may render
the system persistent.

That switching of predators may contribute to persis-
tence is not at all a new finding, but analytical results
(and, hence, more precise predictions) are still hard to
come by. Studying the more simple case where the al-
ternative food is present in constant amounts allows us
to analyze the link between optimal foraging and pop-
ulation dynamical consequences in more detail. Since it
has long been known that stability of the population
dynamical equilibrium gives only limited insight, we will
analyze not only the conditions for stability but also those
for long-term nonequilibrium persistence (bounded pop-
ulation fluctuations). This leads to specific hypotheses
about which types of alternative food (in terms of avail-
ability, nutritional quality, and handling time) promote
persistence and by which mechanism.

Fine-Grained Environments
Optimal Foraging and Switching

Consider a predator in an environment in which point-
like food items (prey and alternative food) differing in
profitability (energy content divided by handling time) are
randomly distributed. Let handling of a captured prey take
T, time units and handling of an alternative food item T,
time units. Then functional responses, that is, per capita
consumption rates, with respect to prey and alternative
food are given by

N
WNA) =17 TN+ pLA’
P — W

1+ TN+ pT,A’

provided that a predator will consume an alternative food
item upon encounter with probability p. This formulation
implies that the densities of prey (N) and alternative food
(A) are scaled with respect to search rate of the predators;
this can be done without loss of generality.

Taking into account the nutritional value of prey (cy)
and alternative food (c,), a predator’s average food intake
rate (which we will take to be proportional to its rate of
reproduction) will equal
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This expression is exactly of the same form as the “gain
rate function” considered by Werner and Hall (1974) and
Charnov (1976), which means that their conclusions apply
directly to this model.

A well-known result in optimal foraging theory is that
a predator maximizes its food intake rate by completely
ignoring alternative food (i.e., p = 0) if

ﬁ>£ (3)
T,” 1+ TN

(Stephens and Krebs 1986), that is, when the density of
the prey is above the threshold density

Ns = #) (4)
ol — eIy

and consuming all food items it encounters (p = 1) oth-
erwise. Note that the switch density depends only on the
profitability of the alternative food (c,/T,); its density (A)
is irrelevant. This classical result in optimal foraging theory
is called the “zero-one rule” (Stephens and Krebs 1986)
because alternative food is either always accepted or always
ignored depending on the density of the more profitable
prey type. Note that when the prey density is equal to N,
the functional response g(N, A) is independent of p. There-
fore, if prey density is exactly N,, optimal foraging theory
does not provide us with a unique solution to the diet
selection problem because all p in the interval [0, 1] give
the same predator fitness.

The functional response of optimally foraging predators
with respect to prey is therefore given by

f ~

— N>N,
] + TN
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N N<N
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while the functional response with respect to alternative
food is given by

0 N> N,
A
fi(N, A) = 00———— | N=N,. (6)
1+ T\N+ T,A
A
— N< N,
1+ TN+ T,A

The functional response to prey density is not uniquely
determined at the threshold prey density N, (fig. 1). The
discontinuity in the functional response results from the
predator’s suddenly spending more time in consuming
alternative food, which reduces the number of encounters
with prey. The more time that is invested in consuming
alternative food (which is proportional to T,A), the greater
the discontinuity in the functional response f(N, A). It
should be noted that the average food intake rate g(N, A)
contains no such discontinuity because at the threshold
alternative food precisely compensates the drop in prey
consumption.

Stepwise changes in functional response are rarely ob-
served (Stephens 1985; McNamara and Houston 1987;
Schoener 1987). Many explanations are conceivable for
more gradual switching behavior, or “partial prefer-
ences.” For example, predators need information on prey
abundance, and contrary to the omniscience in predators
obeying Charnov’s (1976) assumptions, they will have to
estimate prey density, with inherent effects of time lag
and sampling error. We will model gradual switching
behavior by assuming that the probability of a predator
consuming an alternative food item is given by a sigmoid
function:

functional -

response
ALY
)

prey density
N

Figure 1: Functional response curve with switch for fine-grained envi-
ronments predicted by optimal foraging theory. The dashed line repre-
sents alternative food consumption. Parameters: ¢y = 1.0, ¢, = 0.1,
Ty=T,= 02
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where 0 = m~' determines the width of the predator’s
switching interval. The smaller the ¢, the more closely
p(N) will approximate the optimum stepwise switch. A
more gradual switching may also be the result of differ-
ences between individual predators, as this will lead to
variation in optimal switching densities; then p(N) would
represent the cumulative probability function in which
N, is the median switching density.

Population Dynamics

To analyze the effect of various types of functional responses
in a spatially homogeneous system, Murdoch and Oaten
(1975) considered a simple Lotka-Volterra type of model,

dN
E = rN— fu(N)B

dP
E = Pleyfu(N) — 6], ®)

specifying the dynamics of prey (N) and predators (P),
where f,(N) represents the functional response of the pred-
ators, that is, the per capita predation rate. Nutritional value
of a prey (in terms of predator fitness) is given by c,, and
per capita mortality rate of the predators (or “starvation
rate”) is given by 6. In absence of predation, the prey pop-
ulation grows exponentially with a per capita rate .

As prey items need to be handled and digested, a general
aspect of functional responses is that they are likely to satiate
when prey density is high. Such satiation is a destabilizing
mechanism because the risk of predation now decreases with
prey density (Holling 1959; May 1974; Murdoch and Oaten
1975). This poses the problem of which mechanisms coun-
teract this inherent instability of predator-prey interactions.

If it is assumed that f,(N) has a sigmoid shape due to
switching, equations (8) lack an important component.
When a predator switches to another food source, it is still
consuming something, and this will contribute to its re-
production. This food to offspring conversion does not
show up in the equation describing the predator’s pop-
ulation dynamics. Incorporating the contribution of al-
ternative food to the per capita reproduction of the pred-
ators, ¢, f,, leads to
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In general, the functional responses f and f, will depend
both on the densities of prey and alternative food densities.
Since we assume that alternative food has no dynamics of
its own, A can be treated as a parameter. For simplicity,
we will therefore omit A from the arguments of the func-
tions fy and f,. Before discussing the consequences of op-
timal foraging, we will first derive the conditions for local
stability of the modified model (eqq. [9]) assuming ar-
bitrary functional response curves.

Note that due to the fact that for N = N,, the functional
responses fy and f, are not uniquely given, and conse-
quently, the right-hand side of system (9) is also non-
unique. However, system (9) is still well defined because
there exists a single trajectory starting from every initial
point (Colombo and Kfivan 1993; Ktivan 1996).

Local Stability

Local stability analysis of system (9) (see appendix) reveals
that there are two stability conditions. The first is the
familiar condition

L~ KD
fN(N)> Xf

(10)

(see also Murdoch and Oaten 1975). This implies that at
equilibrium N an increase in prey density should be fol-
lowed by a disproportionately large increase in the func-
tional response (the functional response should increase
supralinearly). This condition is met in, for example, the
lower part of a classic sigmoid functional response. There-
fore, equilibrium prey density should not be too high;
otherwise, the functional response satiates (still increases
with prey density but sublinearly), and the prey population
will escape from predator control (Murdoch and Oaten
1975).
The second stability condition,
exfu(N) + ¢, fi(N) >0, (11)
implies that the per capita growth rate of the predators
should increase with prey density. As the second term will
be negative (predators will consume less alternative food
when prey density increases), the per capita growth rate
will increase more slowly with prey density than in the
absence of alternative food. In other words, reproduction
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of the predators is less tightly linked to prey density. The
presence of alternative food therefore results in a weaker
regulation of the predator population (see also Abrams
1987).

Note that there is an interaction between the two sta-
bility conditions: the presence of alternative food will lead
to reduced equilibrium prey densities, a phenomenon
called “apparent competition” (Holt 1977; see fig. 2). Al-
ternative food may therefore push the equilibrium prey
density into (but just as well out of) the interval where
the functional response rises supralinearly (as in fig. 3).

Optimal Foraging and Population Stability

It is important to realize that the functional response pre-
dicted by optimal foraging theory (fig. 1) does not have
a part with a supralinear increase (except in the special
case in which the equilibrium density precisely coincides
with the switching point, in which case the increase is
infinite). As a consequence, such a functional response
does not stabilize the equilibrium.

The stability analysis is based on the assumption that
functional responses do not change abruptly. In other
words, it is implicitly assumed that predators can only
approximate the stepwise switch that maximizes food in-
take rate according to optimal foraging theory.

A more gradual switch (such as modeled in eq. [7])
may still lead to a functional response with a part that
increases supralinearly (see fig. 3), but note that the range

per capita
rate of
reproduction
of the
predators

prey density
N

Figure 2: Reduction of equilibrium prey density as a consequence of the
simultaneous presence of alternative food (apparent competition; Holt
1977). When there are no other factors affecting prey population growth,
equilibrium density of the prey is determined entirely by the predator’s
numerical response. In absence of alternative food, equilibrium prey
density equals N_ (where predator reproduction equals death rate),
whereas in the presence of alternative food, it decreases to N, (apparent
competition). The predators are assumed to switch gradually.

functional |
response
e
S
FAGY) /
s
< I
Ve o -~
L // /-
Yy i
< | .
27 1 stable :
# — ‘
L Pl ;
o 0 1 2 3
prey density
N

Figure 3: Graphical derivation of the range of stable equilibrium prey
densities for gradually switching predators in a fine-grained environment.
Within the indicated range, the slope of the functional response is larger
than fi(N)/N; outside, it is less.

will be small unless switch precision is low. How, for a
given switching precision, equilibrium density and the sta-
ble range depend on nutritional value of alternative food
is shown in figure 4. For a stable equilibrium, alternative
food should be sufficiently profitable but not too profit-
able. When precision increases (o decreases), switches be-
come steeper. However, at the same time, the stable range
narrows, and therefore the region of stability in parameter
space becomes smaller and eventually vanishes (fig. 5).
(Similar graphs result when handling time of alternative
food is varied instead of nutritional value.) The density of
alternative food may have an effect on ecological stability
only when predators are imprecise (or when there is var-
iation in switching; fig. 6).

Murdoch’s work on switching predators (Murdoch
1969; Murdoch and Oaten 1975) spawned an extensive
body of literature dealing with the so-called preference of
predators for certain food types, that is, how the ratio of
food types represented in the predator’s diet differs from
the ratio that it actually encounters. Theoretical work on
the consequences of prey preference (see, e.g., Comins and
Hassell 1976; Tansky 1978; Vance 1978; Hutson 1984; Mat-
suda 1985; Mukherjee and Roy 1998) usually assumes
some kind of sigmoid preference curve, or a “switching
function” that resembles superficially a sigmoid functional
response. It should be kept in mind, however, that there
is a fundamental difference between a sigmoid preference
function and a sigmoid functional response. Sigmoid pref-
erence functions p(N) do translate into a functional re-
sponse with an accelerating part and may thus contribute
to stability. However, they do not necessarily lead to a
satiating functional response (which is an essential element
causing a sigmoid shape). As a consequence, the effect of
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Figure 4: When the quality of the alternative food (c,; in fine-grained
environments) increases, both equilibrium prey density N (solid line)
and switch prey density N, (dashed line) change. The equilibrium is
stable only when equilibrium density falls within the stable range
around the switch prey density (indicated by dotted lines). (Numerical
solution of equilibrium density and stable range for r = 1.2, 6 = 1,
=1 Ty=T,=02A=4 0=02)

a sigmoid preference function may be quite different from
a sigmoid functional response.

Persistence

Stepwise switching of predators does not promote ecological
stability, but that does not mean at all that predators and
prey will eventually become extinct. Cycles will diverge away
from the equilibrium, but eventually a limit cycle may be
reached (Gleeson and Wilson 1986; Fryxell and Lundberg
1994). Kiivan (1996) and Kiivan and Sikder (1999) have
analyzed such cycles for a one-predator/two-prey system.
When one of the prey species is in fact alternative food with
a constant density, the effect can be demonstrated straight-
forwardly using phase-plane analysis.

As per capita reproduction of the predators does not
depend on predator density, the predator isocline runs
parallel to the P-axis. The prey isocline is given by

N = f(N)P& P = NZ—II])

12)

Now switching of the predators has to be taken into
account. For prey densities larger than the critical prey
density (N> N,), the isocline for stepwise switchers is
given by

NLE TN _

=r N r(l + TyN), 13)
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whereas for low prey densities (N < N,), it is given by

P=r(l+ TN+ TA. (14)
The predator’s switching behavior thus introduces a dis-
continuity into the phase plane (at the line N = N,) across
which growth rate of the prey population suddenly changes.
As a consequence, it causes a fault in the prey isocline, giving
it a Z-like shape (fig. 7A). Above and below the Z, the
growth changes in magnitude but not in sign. Across the
fault (i.e., the vertical part of the Z), prey population growth
rate changes sign. Near the fault, prey population growth
is always in the direction of the discontinuity; therefore,
trajectories will hit the fault, and as they can go neither left
nor right, they have to move along the fault either up or
down (except in the special case in which 6 = ¢,/T, because
then the whole fault consists of equilibria), depending on
net growth of the predator population near the fault. We
remark that when prey density reaches the fault and moves
along it, partial preferences for the alternative food appear.
Indeed, when a trajectory moves along the fault, prey density
is constant and equal to N, which implies that dN/dt =
0 in equations (9). This allows us to compute the predator’s
partial preference for the alternative food type explicitly:

P Cn

= 15
AT, AT, — oLy (13

p

From the local stability analysis we know that an orbit
starting near the equilibrium will diverge. However, at
some instant, the orbit may hit the isocline fault. Then
the orbit decreases vertically (assuming that the fault is to
the left of the predator isocline) until it reaches the lower
end and is released. If trajectories starting near the equi-

nutritional ©°4
value

Ca F

switching precision
c

Figure 5: Stability domain as a function of nutritional value and switching
precision of the predators in a fine-grained environment. (Numerical
solution of the stability condition for r =1.2,6 =1, ¢y =1, Ty =
T, =02 ¢ =01 A=10)
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Figure 6: Stability domains as a function of nutritional value and density
of the alternative food in a fine-grained environment for three values of
the switching precision. Other parameters are r = 1.2, 6 = 1, ¢y = 1,
Ty = T, = 0.2. Notice that if ¢, >6(A™" + T,) = A" + 0.2, alternative
food is no longer “alternative” because it then allows reproduction of
the predators to exceed their death rate. This limit lies beyond the range
of the graph.

librium are thus trapped, long-term behavior is deter-
mined by the trajectory that starts at the lower end of the
fault. When this trajectory eventually returns to the dis-
continuity at some point in the isocline fault (which can
occur in two ways; fig. 7A, 7B), it will be brought back to
its starting point, and a limit cycle emerges. A parameter
survey suggests that such limit cycles may occur in a large
part of parameter space (fig. 8).

Thus, persistence may be promoted by alternative food
of very marginal quality provided it is sufficiently abundant,
even when it has no effect on ecological stability. In contrast
to ecological stability, persistence depends strongly on the
density of alternative food (cf. figs. 6, 8).

Coarse-Grained Environments
Optimal Foraging

The second important conceptual framework of optimal
foraging theory is the patch-choice model (Stephens and
Krebs 1986; Rosenzweig 1991). This model considers the
distribution of consumers in a patchy environment, as-
suming that each consumer settles in the patch where its
rate of energy intake (assuming this is proportional to
fitness) is maximized.

We assume that food resources are distributed over two
patches. The prey, whose density N is influenced by the
predator population, occupy one patch (referred as the
“prey patch”), while the alternative food, with constant
density A, is found in the other patch (the “alternative
patch”). Here we will consider the optimal decisions of

“ideal and free” predators, that is, predators that have the
ability to detect and the means to move to the most prof-
itable patches (Fretwell and Lucas 1970). Thus, we will
not discuss the important class of metapopulation models
where movement is so slow that predator and prey in
different patches may become dynamically uncoupled
(Jansen 1995). We assume that predators can move very
fast; this does not mean that they will distribute themselves
evenly over the patches, as they are free to go to the more
profitable patches. (See McPeek and Holt [1992], Fryxell
and Lundberg [1993], and Holt and McPeek [1996] for a
discussion of how natural selection may affect dispersal
rates in true predator-prey metapopulations.)

When we denote the proportion of time that a predator
will spend foraging in the alternative food patch by g (and,
hence, proportion of time spent in the prey patch is
1 — ¢q), functional responses are given by

Figure 7: Phase plane with a discontinuous prey isocline as a result of
diet expansion of the predator (fine-grained environments). A trajectory
starting at the lower end of the isocline fault may hit the fault again
either from the right (A) or from the left (B), leading to a limit cycle in
both cases. Parameters: r = 1.2,6 =1, ¢y =1,¢, =0.1, Ty =T, =
0.2, and (A) A = 10 and (B) A = 5.
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Figure 8: Entrapment of orbits ( filled circles) for different combinations
of nutritional value and abundance of the alternative food. The param-
eters are the same as in figure 6, except that ¢ = 0, which implies that
the equilibrium is stable only if ¢, equals exactly 0.2.

_(1-gN
N A) = 1+ TN’
A
fi(N, A) = lfﬁ (16)

As before, we assume that the densities of prey and al-
ternative food are scaled with respect to predator search
rate. Taking into account the nutritional value of prey (cy)
and alternative food (c,), a predator’s average food intake
rate will equal

8N, A) = c (N, A) + ¢, fi(N, A)

c\qA
1+ T,A

_ oyl —gN
1+ TN

17)

Note that this equation assumes that the encounter rate
with food items is much higher than the frequency of
transitions between sites. In a sufficiently coarse environ-
ment, transitions will occur relatively infrequently so that
a predator in the prey patch will not encounter nor handle
alternative food and vice versa. Thus, functional response
in a given patch only depends on what is found locally.
Were the predators to move often between the two patches,
we would recover the equations for the fine-grained model.
(Incidentally, here our model differs from that studied by
Fryxell and Lundberg [1997], where their eq. [4.1] assumes
essentially a fine-grained environment.)

Since the fitness of a predator is directly proportional
to its per capita instantaneous growth rate g(N, A), the
optimal strategy is to forage exclusively in the prey patch
(q = 0) if prey density is above the threshold density
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A
N, = . (18)
vt A(CNT;\ - CATN)

If prey density is below this threshold, the optimum strat-
egy is to forage exclusively in the alternative food patch
(g =1).

The functional response of optimally foraging predators
is therefore given by

N
——~——— N>N.
1+ TN
(1 —gN
NA =Y —>—~ N=N, 19
SN, A) TF TN , 19)
0 N<N,

while the functional response in alternative food patch is
given by

0 N2> N,
qA
N,A)=¢d ——— N-=N.. 20
N A = ¢ o L)
A
—  N<N,
1+T,A ’

Again, the functional responses both to prey and alter-
native food densities contain a discontinuity at the thresh-
old prey density. This results from the fact that predators
instantaneously move from one patch to the other when
the prey density crosses the threshold N.

The change in foraging strategy g will be more gradual
when predators need to sample the patches or when their
assessment is imperfect. This can be modeled by

m

q(N) = (21)

N™+ Z\[sm’

in which case a sigmoid functional response arises. Again,
as 0 = m ' increases, the above curves converge to the
stepwise optimal switching function.

Population Dynamics, Persistence, and Stability

Population dynamics are again modeled by the Lotka—
Volterra type model (9) with corresponding functional re-
sponse given by equations (19) and (20). Now N denotes
the prey density in the prey patch, and P is the overall
predator density. Other parameters have the same meaning
as those for the system of equations (9). For nonswitching
predators foraging randomly (i.e., predators that spend a
fixed proportion q [0 < g < 1] of their time in the alternative
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food patch), the corresponding population dynamics has
one ecological equilibrium, which is unstable, and the sys-
tem is nonpersistent.

For the gradual switching function, we can study the
equilibrium stability as we did in the previous section.
Again, the gradual switch modeled by equation (21) can
stabilize the population equilibrium for exactly the same
reasons as it does in a fine-grained environment (see ap-
pendix). Specifically, the first stability condition becomes

T,

qg'(N) < —[1 — g(N)] ﬁ\] (22)

This again implies that the predators switch sufficiently
fast with respect to small changes in prey density (note
that g'(N) will be negative, as the predators will avoid the
alternative patch when prey density increases).

Now we consider perfectly switching predators that fol-
low the stepwise optimal patch choice. As for the case of
fine-grained environment, flexible predator behavior leads
to persistence via the emergence of a stable limit cycle. In
the case of a coarse-grained environment, the limit cycle
is globally stable because the prey isocline in the prey patch
is L shaped and, thus, unbounded from above (see fig. 9).

Thus, the trajectory that starts at the lower point of the
fault must necessarily hit the fault again, which leads to the
emergence of a globally stable limit cycle. Starting with a
sufficiently high initial prey density (i.e., to the right of the
switching line N = N,) all predators will choose the more
profitable prey patch (p = 0). This results in unstable dy-
namics, and the trajectory will spiral away from the equi-
librium. Eventually, it will reach the isocline fault (N =
N,), where both patches will be of equal quality, and some
predators will move to the patch with alternative food. The
trajectory then moves downward along the isocline fault for
some time, the predators maintaining the ideal free distri-
bution over the patches with prey and alternative food.
When the trajectory reaches the lower point of the fault
(see fig. 9), the prey population escapes from predator con-
trol, and the cycle starts anew. When predator-prey dynam-
ics move along the fault, the density of the prey is kept
constant by the predators, and the fraction of predators
choosing the prey patch is given by

ren(l + AT))
P[CN + A(CNT;\ - CATN)] ’

q=1- (23)

Thus, as the trajectory moves down the fault, the ideal free
distribution will change over time.

Figure 9: Phase plane with a discontinuous prey isocline due to patch
switching by the predators (coarse-grained environments). The dashed line
is the switching line. All trajectories do converge to the limit cycle denoted
by the heavy line. Parameters: r = 1.2, § = 3 (mortality is the same in
both patches), ¢y = 1, ¢, = 0.25, T, = 0.1, T, = 0.1, A = 40.

Discussion

That switching to alternative food sources may render
predator-prey systems persistent is one of ecology’s (few)
common, and often unquestioned, truths. Because alter-
native food sources are likely to be ubiquitous, modelers
therefore do not hesitate to incorporate S-shaped func-
tional responses into their models, arguing that this rep-
resents a switch to alternative food sources when prey are
scarce. However, this may easily lead to spurious conclu-
sions. First of all, the contribution of the alternative food
to the predator’s numerical response should be taken into
account. Second, one may wonder whether a given switch-
ing function is actually adaptive; sigmoid functional re-
sponses are demonstrably maladaptive in basic settings
(Holt 1983). Third, it may be necessary to assess not only
how the switch affects the equilibrium but also how it
affects the global dynamics of the system. Even if alter-
native food does not stabilize the system, as seems likely
for adaptive switches, it may still promote persistence. Fi-
nally, as this article suggests, alternative food sources that
lead to stability may be different from those that promote
persistence. We will now discuss these aspects in more
detail.

Apparent Competition

The presence of alternative food may not only change the
shape of the functional response, it may also increase equi-
librium predator densities, which, in turn, will lead to a
reduction in equilibrium prey density. This predator-
mediated effect of alternative food on prey density, termed
“apparent competition” by Holt (1977), may affect stability



because it may shift equilibrium prey density either into
or out of the range where the predators can regulate the
prey population. In the extreme case, it may actually result
in prey extinction (Holt et al. 1994; Bonsall and Hassell
1997).

The original studies of apparent competition assumed
that populations are in equilibrium (Holt 1977). Our anal-
ysis suggests that this result only occurs under a rather
narrow set of conditions. First, predators are expected to
switch in a stepwise manner, whereas a stable equilibrium
is more likely to result when predators are imprecise
switchers (as this broadens the range over which the func-
tional response curves upward). Second, the profitability
of the alternative food should be within a certain range.
If the profitability of the alternative food is too low, it will
not be included in the predator’s diet; if it is too high, the
predator population will become unregulated.

Stability or Persistence?

Our analysis confirms the conclusions of earlier studies
(Gleeson and Wilson 1986; Fryxell and Lundberg 1994,
1997; Ktivan 1996) that whereas the conditions for stability
of the equilibrium are rather narrow, parameter combi-
nations that lead to stable limit cycles may be much
broader. When under conditions of low prey density the
predators switch to alternative food, predator population
decrease is slowed down while, at the same time, predation
pressure is relaxed, allowing the prey population to re-
cover. In combination, these mechanisms may give rise to
a limit cycle. This effect is not limited to stepwise switches,
as limit cycles may also occur with more gradual switching
(fig. 10).

It is important to stress that in fine-grained environ-
ments, persistence critically depends on the shape of the
functional response in the low-prey-density range. Opti-
mal foraging combined with gradual switching results in
a functional response that might look quite similar to other
sigmoid functions commonly used to represent switching,
like

NZ

> 24
N?+ H? 24

fIN) =

but there is a crucial difference. The latter function has
zero slope near N = 0, which implies that the prey isocline
will approach the P-axis only as P goes to infinity: the
predators will never be able to exterminate the prey, and
persistence is guaranteed. In contrast, the functional re-
sponse of an optimal forager is likely to have a positive
slope near N = 0. The S-shaped isocline that results will
intersect the P-axis (fig. 10); therefore, diverging oscilla-
tions near the axes are not precluded.
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N

Figure 10: S-shaped prey isoclines and resulting limit cycle when pred-
ators switch gradually. Parameters: r = 1.2, 6 =1, ¢y =1, ¢, = 0.1,
Ty=T,=02A=10,0=0.1

Permanence (which means, loosely, that trajectories are
bounded away from 0 [Hofbauer and Sigmund 1988]) will
thus depend on the slope of the functional response at
low prey densities, which is notoriously difficult to mea-
sure experimentally (van Lenteren and Bakker 1976; Has-
sell et al. 1977).

In coarse-grained environments, however, the func-
tional response of (sub)optimal foragers will always start
(at N = 0) with zero slope and will, therefore, come much
closer to the classic sigmoid functional response of equa-
tion (24). The resulting N-isocline does not intersect the
P-axis, and the system is always permanent (fig. 9).

We conclude that the importance of alternative food is
not so much that it promotes stability but rather that it
promotes persistence. Whether the alternative food occurs
together with the prey (in fine-grained environments) or
separately (in coarse-grained environments), its effect is
always that the predator’s switch to alternative food re-
lieves predation pressure when prey density is low, thereby
preventing unbounded oscillations.

It may not be so surprising that adding an intrinsically
stable component (alternative food with fixed density) to
an unstable system (the predator-prey interaction with sa-
tiating functional response) may help to render it per-
sistent. However, persistence critically depends on how
predator behavior couples the two subsystems. Persistence
will not arise if the predators do not switch (neither in
fine-grained nor in coarse-grained environments).

Our conclusions may also be of interest for the study
of more complicated food webs than the one we consid-
ered. For example, Huxel and McCann (1998) have shown
that a constant influx of alternative food sources (“alloch-
thonous” inputs) may help to render persistent intrinsi-
cally unstable three-level food chains. Their model, how-
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ever, did not include adaptive behavior (i.e., switching) of
either the consumer or the top predator. It would be in-
teresting to investigate how switching will affect the con-
ditions for persistence of such longer food chains.

Perspectives for Biological Control

Insight in the effects of alternative food may help to
devise strategies for biological control involving a supply
of alternative food (van Rijn and Sabelis 1993; van Rijn
et al. 2001). Classical optimal foraging theory suggests
that the effect of alternative food can be predicted on
the basis of its profitability alone. However, our analysis
indicates that nutritional value, handling time, and abun-
dance of alternative food should be considered separately.
For example, sources of alternative food that have the
same profitability but differ in handling time will have
different population dynamical consequences.

Optimal strategies for biological control will depend on
the desired population dynamical effect. If the aim is a
reduced but stable prey density, one has to select alter-
native food according to precise specifications with respect
to quantity and quality, whereas if the aim is to promote
persistence, one may only need to supply low-quality al-
ternative food in sufficient quantities. However, if the aim
is neither stability nor persistence but eradication of the
prey, one should add alternative food of higher quality:
high enough for predator population maintenance (in ab-
sence of prey) but not so high that the predators will ignore
the prey altogether.
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APPENDIX

Local Stability Analysis

The equilibrium of predator (P) and prey (N) follows from
setting dN/dt and dP/dt of equations (9) equal to 0, which
yields

N = NPl fil(N) + ¢, i(N)] = 6. (A1)

Such an equilibrium will exist, for example, if

cnful(0) + ¢, £(0) < 6 (A2)
and if, for prey densities sufficiently large,
cnfu(N) + ¢, fi(N) > 6. (A3)

Because we assume that f,(0) = 0, the first of these con-
ditions implies
¢, f,(0) <6, (A4)
which means that predators cannot subsist on alternative
food alone; the second condition simply means that the
predator population will increase if there is sufficient prey.
The equilibrium is asymptotically stable if the deter-
minant of the Jacobian,

r— fi(N)P —fu(N)

— _ — , (A5)
PleyfilN) + ¢, fi(N)] 0

is positive and the trace is negative. (The prime denotes
the derivative of a function with respect to its argument.)
The trace of J is

T fI(N)P (1 £ IG(N)N) (A6)
= r— =r e N
: FN)
which yields the first stability condition (10).
The condition on the determinant of J is
D = f(N)Pleyfi(N) + ¢, fi(N)] >0, (A7)

which yields condition (11).
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