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Pair Approximations for Different

Spatial Geometries
Minus van Baalen

19.1 Introduction
The standard assumption underlying the formulation of models for popula-
tion dynamics (such as the logistic growth equation, the Lotka–Volterra
predator–prey model, and the Kermack and McKendrick epidemiologi-
cal equations, to name a few) is that populations spread homogeneously
through space and that individuals mix rapidly. It is not a new insight that
spatial structure is often an essential component of the ecological (and evo-
lutionary) dynamics of populations, and there have been many approaches
to understanding the various consequences of spatial structure. In this chap-
ter I address one of the more recently developed techniques for modeling
spatial population dynamics.

The oldest approach is to assume that populations are subdivided into
different discrete subpopulations that are linked through migration (the
“metapopulation” approach). This may be a reasonable assumption for cer-
tain systems (groups of parasites living in different hosts, for example), but
space often has a more a continuous aspect. For example, a forest may
be highly structured without having clear boundaries between subpopula-
tions. Such situations are often modeled using a diffusion formalism, but
this approach has its shortcomings as well. In particular, when one consid-
ers spatial spread of a population (or gene), individuality (discreteness) and
its associated stochasticity may be important (Durrett and Levin 1994b).
In a diffusion model, the rate of population growth is determined by the
spread of “nano-individuals” at the wave front, whereas in reality it is often
determined by the more erratic process of dispersal and subsequent suc-
cessful settlement of individuals. Not only might this give quantitatively
wrong estimates [e.g., the conditions under which an epidemic can arise;
see Chapter 6 and Jeltsch et al. (1997)], it can also yield qualitatively wrong
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360 D · Simplifying Spatial Complexity: Techniques

predictions (the term “atto-foxes” has been used to describe some spurious
results from diffusion-based population models; see Mollison 1991).

By their very nature, diffusion models do not incorporate individuality.
There exists, however, a suite of powerful mathematical techniques to deal
with models that are based on stochastic, discrete events (Durrett and Levin
1994b). In some variants, individuals are represented as points and inhabit
a continuous spatial domain (see Chapters 20 and 21; Pacala and Tilman
1994; Dieckmann et al. 1997); in others, individuals inhabit a discretized
spatial domain, that is, a lattice of sites. This chapter focuses on the latter
of these.

Even if localized, discrete and stochastic events make it difficult to study
the exact dynamics of a system. However, the rates of change of certain
average quantities (macroscopic spatial statistics) can be predicted with
some accuracy. The fundamental approach is to derive the expected rate
of change of an average quantity f (such as the proportion or number of
sites in a particular state) by averaging all possible events over the entire
lattice; that is,

d E( f )

dt
= E

(
d f

dt

)
=

∑
All sites x

∑
All events ex

r(ex)( fex − f ) , (19.1)

where r(ex) gives the probability per unit time that an event e occurs at
location x changing the average from f to fex . The main technical problem
that we need to address in this chapter originates with the fact that rates
r(ex) usually depend on the full spatial configuration.

When f stands for a quantity such as the proportion of sites occupied
by a given species, classical (nonspatial) models can be obtained. How-
ever, f can just as easily stand for a configuration statistic involving more
than one site. In that case, Equation (19.1) describes the dynamics of this
configuration statistic and allows us, in principle, to work out how spatial
structure changes over time. The simplest spatial “configuration” to which
to apply this technique is pairs of nearest neighbors. In other words, instead
of having as average quantity the proportion of sites in a given state (which
yields the “density” of that state), the formalism is applied to the states of
pairs of neighboring sites. The density concept is thus extended to pairs of
nearest neighbors (or pairs for short).

The main advantage of knowing pair densities is that they provide infor-
mation about the spatial distribution of states on the lattice. I will explain
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how they do so in some detail in this chapter. Pair-dynamics models orig-
inated in theoretical physics and were introduced into theoretical biology
by Matsuda et al. (1992) to analyze spatial dynamics of predator–prey sys-
tems. They subsequently have been applied to host–parasite systems (Satō
et al. 1994; Keeling 1995), models for plant competition (Harada and Iwasa
1994), and the evolution of altruism (Matsuda et al. 1992; Harada et al.
1995; Nakamaru et al. 1997; van Baalen and Rand 1998).

A minor note for the connoisseur of spatial models may be appropri-
ate here. In the simplest pair-dynamics models, events change the state
of only a single site at a time. For some applications this may be suffi-
cient, but in many ecologically interesting systems, events change two sites
at a time. Maybe the most important example of such a two-site event is
movement of an individual from one site to another: an occupied site is
vacated as another becomes occupied. In addition, other types of events
cause simultaneous changes in a pair of neighboring sites. For example,
in a predator–prey model, a predation event is modeled as one in which a
“prey”–“hungry predator” pair becomes a “satiated predator”–“empty site”
pair (de Roos et al. 1991). Models that allow simultaneous changes in
neighboring sites are called “artificial ecologies” by Rand et al. (1995). To
account for processes such as movement of individuals, in this chapter I
use this formalism to allow events that change pairs of neighboring sites,
instead of just single sites. Because movement is allowed, the method can
be used to describe “viscous” populations, a term introduced by Hamilton
(1964) to characterize populations that do not exhibit panmixis, but do not
have a sharply subdivided spatial structure either.

A major incentive for developing pair-dynamics models has been the
limited usefulness of probabilistic cellular automata, an increasingly pop-
ular way of studying spatial dynamics. It is relatively straightforward to
model a spatial ecological system by setting up a lattice of sites and defin-
ing a set of rules that change the state of sites depending on their state and
that of their environment. The advantage of this approach is that spatial
phenomena are explicitly included. A disadvantage, however, is that sim-
ulating these models is rather time consuming. More seriously, the results
are sometimes difficult to interpret and are not easily generalized. One
is effectively limited to observing what happens in the simulation. Often,
for example, it is difficult to explain why some species persist in spatial
simulations and others do not. Pair-dynamics models provide analytical in-
sight into this question. Used this way, pair-dynamics models are tools for
capturing the essence of more-detailed, explicitly spatial models.
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(a) (b)

Figure 19.1 Examples of (a) a regular two-dimensional lattice and (b) a random network,
both with a neighborhood size of three. In both graphs, a focal site (black) and its neighbors
up to two links away (dark and light gray) are indicated.

Pair-dynamics models sometimes cannot account for all features of the
full spatial dynamics, particularly when the dynamics give rise to large-
scale spatial structures (these cannot be accurately described on the basis
of nearest-neighbor correlations alone). Nonetheless, the analytical insight
pair-dynamics models provide is valuable. In this chapter I demonstrate
that, even if pair-dynamics models do not describe the exact dynamics of a
full system, they can provide good approximations for invasion and equi-
librium conditions. Moreover, pair-dynamics models provide analytical in-
sight into the relationship between lattice structure and population dynam-
ics.

Computer simulations are usually defined on square grids where every
site is connected to either four or eight neighbors. This is of practical con-
venience, as such lattices can easily be implemented in a program and dis-
played on a screen. However, it should be realized that such square lattices
are quite special; even with a fixed number of connections per site, sites can
be arranged in many ways. For example, with four connections per site, the
sites can be laid out geometrically in a flat lattice (the usual case), but also
in a lattice (based on tetrahedrons) that fills three-dimensional space, and
of course in many other, less regular lattices.

That the structure of a lattice has consequences for population dynam-
ics becomes apparent once one realizes that growing clusters of individu-
als have different overall shapes on different lattices: expanding foci are
roughly circular on two-dimensional lattices such as the lattice depicted
in Figure 19.1a, roughly spherical on three-dimensional lattices; and more
tree-like in random lattices (Figure 19.1b). Obviously, for a model of plant
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population dynamics the choice of a two-dimensional lattice can be justi-
fied. However, a case can be made for more random lattices to describe
other systems, such as parasites that transmit themselves across the social
network of their host. Such a network does not necessarily correspond to
the host individuals’ spatial arrangement and may resemble a random net-
work such as shown in Figure 19.1b (see also Watts and Strogatz 1998).

The aim of this chapter is twofold. First, I outline how to derive and use
pair-dynamics equations, that is, differential equations that describe the rate
of change of the density of pairs of neighbors (instead of only the densities
of singlets, as is usually done). I then indicate how pair dynamics depend
on the geometric structure of the lattice.

Working out the derivation in some detail is useful because it makes
explicit the types of assumptions that must be made to “close” the set of
equations. This term refers to the fact that the differential equations de-
pend on quantities outside their scope (the densities of “triplets” and more
complicated configurations). “Closure” means adopting an assumption that
allows the differential equations to be completely expressed in terms of the
quantities whose dynamics are described by the differential equations (in
our case, pair densities). This is an important step, because pair dynamics
turn out to depend on the densities of triplets and even larger configurations.
The standard approach is to approximate triplets using pairs. However, as I
show, knowledge of the geometrical structure of the lattice can be used to
provide better estimates. A limitation of the approach adopted here is that
it applies only to lattices with a fixed number of neighbors. Morris (1997)
and Rand (1999) provide discussions of possible approaches for lattices
that have variable numbers of connections per site.

Because the first part of this chapter is quite technical, it is accompanied
by a parallel series of boxes in which a pair-dynamics model is derived and
analyzed for a simple example. The example is the spatial equivalent of the
well-known logistic growth model, where in addition to the birth and death
of individuals, movement is also included. I compare the pair-dynamics
model with explicit simulations and outline how invasion conditions can
be derived. (Such invasion conditions give valuable insight into the con-
ditions for persistence of a given population, because persistence requires
that a population must bounce back when it is brought to low densities.) In
this analysis, particular attention again is paid to how the spatial dynamics
depend on the geometrical structure of the lattice.
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19.2 The Dynamics of Pair Events
The set of sites that belong to the lattice (which is assumed to be finite but
large) is denoted by S. Every site is assumed to have n neighbors. Let
L ⊂ S× S represent the set of connections (or pairs of sites) on the lattice.
That is, two sites x and y form a pair if xy ∈ L .

Every site x ∈ S is in a state σx , where � is the set of all possible
states. The state of the entire lattice is denoted by σ ; the state of a pair xy
is denoted by σxσy .

In an artificial ecology, the state of the lattice σ changes over time be-
cause events change the state of sites or pairs of sites. Here, all events are
defined in terms of pairs:

σxσy → σ ′xσ
′
y , (19.2)

where the state of the lattice changes from σx to σ ′x at site x and from σy

to σ ′y at site y simultaneously. (Notice that this formalism also includes all
“single-site” events. Single-site events can be analyzed separately, but for
the moment we consider a single-site event a special pair event.)

Any event σxσy → σ ′xσ ′y has an associated rate (probability per unit
time)

rσ (σxσy → σ ′xσ
′
y) . (19.3)

Usually, it is assumed that all interactions are local: therefore, rates af-
fecting a pair xy depend only on the state of the pair’s immediate environ-
ment Exy:

rσ (σxσy → σ ′xσ
′
y) = r(σxσy → σ ′xσ

′
y|σExy ) , (19.4)

where Exy is a list of all pairs in the local environment of the pair at xy (see
Figure 19.2).

A specific example of a simple artificial ecology is given in Box 19.1.

Pair densities
The initial state of the lattice, σ(0), together with the event rates specify
a stochastic dynamical system: the state of the lattice follows a stochastic
trajectory σ(t). However, if the lattice is large enough, some quantities
(such as the average number of pairs in a particular state) change almost
deterministically. Here, I explain how differential equations can be found
that (approximately) describe the expected dynamics of these quantities.

One can derive the expected rate of change in pa , the probability that
a given site is in state a. This is basically the classical “density” concept,
and indeed the differential equations that result are of the type commonly
used in population biology. The disadvantage is that all information with
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Figure 19.2 An example of a pair at xy and its “left” (xzi ∈ Ex
xy) and “right” (yzi ∈ E y

xy)
environments. The combination of the two specifies the entire environment Exy of the pair.

regard to spatial structure is lost: one is forced to assume that populations
are “well mixed.”

Some spatial information is retained if the states of pairs of nearest
neighbors are traced instead of the states of single sites. One can work
out the expected rate of change in the “pair densities” pi j , where pi j gives
the probability of finding a given pair in state i j . Knowing the pair densities
permits computation of the conditional probabilities

qj |i = pi j/pi . (19.5)

These conditional probabilities give the density of j sites as “experienced”
by sites in state i : effectively, qj |i is the local density of j in the environment
of i [Matsuda et al. (1992), use the term “environs densities” for these
quantities].

Pair dynamics of simple birth–death–movement process

Consider a particular pair combination ab. Obviously, its density pab will
change when pair events directly create or destroy both partners of ab pairs.
In other words, pab increases with all i j → ab events (see Figure 19.3a)
and pab decreases with all ab → kl events. In addition, the density of
ab pairs will be affected by events that occur in ab’s neighborhood; for
example, ab pairs will be created if i j → bl events occur next to an ai pair
(such an event indirectly changes the ai into an ab pair; see Figure 19.3b).
Throughout this chapter, I use the symbols a and b to refer to the pair
combination of states whose dynamics are in focus. The indices i , j , k, and
l are used to sum over other states.

The contribution of direct events to the rate of change of pab is straight-
forward. For example, the creation of ab pairs from i j pairs occurs at rate
pi j r̄σ (i j → ab), which is just the density of i j pairs multiplied by the
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Box 19.1 A simple example of a birth–death–movement process

The simple artificial ecology analyzed in this chapter is defined on a lattice
where every site is connected to n other sites. The sites may be either
empty (o) or occupied by a single individual (×), so � = {o,×}. The
spatial dynamics are determined by birth, death, and movement.

“Birth events” that change o× and ×o pairs into ×× pairs occur with
rate (i.e., probability per unit time)

r(×o →××) = r(o×→ ××) = φb .

The factor φ = 1/n has been introduced for convenience: it allows b to be
interpreted as a per capita rate instead of a per neighbor-pair rate. Note
that “mirror image” events (like the two above) always have the same rates.

“Death events” change× sites into o sites, or in terms of pairs,× j pairs
into o j pairs (where j ∈ �). They occur with rate

r(× j → o j) = r( j×→ jo) = φd .

“Movement events” swap × and o sites in ×o and o× pairs (the indi-
vidual moves to the empty neighbor site). They occur with rate

r(×o → o×) = r(o×→ ×o) = φm .

Notice that in this model the rates do not depend on the environment of
the pairs. Such a dependency would arise if, for example, an individual’s
rate of reproduction were dependent on how many occupied neighbors it
has. In that case, b would not be constant but would be given by a function
b(n××), where n×× is the number of × neighbors of the × in the ×o
pair. Such environment-dependent rates result, for example, from altruistic
behavior, where altruistic individuals help their neighbors at their own cost
(Matsuda et al. 1992; van Baalen and Rand 1998). Intra- and interspecific
competition also lead to environment-dependent rates.

average event rate. We must sum over all possible source pairs i j to com-
pute the total rate of direct ab creation. [Calculating average rates such as
r̄σ (i j → ab) is discussed below.]

The contribution of indirect events is a bit more complicated. First, the
contribution of, say, i j → bl events depends on how many j neighbors
an ai pair has on average. This average is given by (n − 1)qj |ia: the i
in an ai pair has n − 1 neighbors, and the likelihood of finding any one
of them in state j is given by the conditional probability qj |ia . Note that
this conditional probability depends on triplet densities: qj |ia = pai j/pia .
Thus the set of differential equations for pairs depends on quantities outside
its scope. (I return to this problem in Section 19.4.) The average rate of
neighborhood events is given by r̄σ (i j → bl|ai j); note that this is not the
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Figure 19.3 The bookkeeping of pairs can depend both directly and indirectly on pair
events. For example, (a) ab pairs are created directly from i j → ab events, whereas (b) they
are created indirectly when an i j → bl event changes the i of an ai pair into a b.

average rate of these events over the entire lattice, but the average rate of
these events in i j pairs in the neighborhood of ai pairs. If the event rates
are constant, conditional and unconditional averages are the same; if they
are dependent on the environment, these averages are different.

Putting together all direct and indirect events that create as well as
destroy ab pairs yields the following “master equation”:

dpab

dt
=− pab

∑
kl

[
r̄σ (ab → kl)+

∑
i

(n − 1)qi |abr̄σ (ia → kl|iab)

+
∑

j

(n − 1)qj |bar̄σ (bj → kl|abj)
]

+
∑

i j

[
pi j r̄σ (i j → ab)+pjb

∑
k

(n − 1)qi | jbr̄σ (i j → ka|i jb)

+ pai

∑
l

(n − 1)qj |iar̄σ (i j → bl|ai j)
]

.

(19.6)

Note that this equation itself does not contain any specific references to the
actual locations of ab pairs on this lattice (there is no summation over all
pairs xy in the lattice). In other words, Equation (19.6) does not explicitly
depend on space. It depends, however, on average event rates, and these
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Figure 19.4 Example of how to characterize the state no× of the local environment of a
pair in state o×.

average rates depend on the state of the lattice. For this reason I have given
the average rates a subscript σ .

A specific example of how to apply Equation (19.6) to the simple birth–
death–movement process introduced in Box 19.1 is given in Box 19.2.

19.3 Average Event Rates
In the simplest models, pair event rates are constants. Often, however, such
rates depend on the local environment of a pair. For example, if a is an
altruistic individual and b is an empty site, the probability of an ab → aa
(birth) event may depend on the number of other as in a’s neighborhood.
The mean rate of ab → aa events therefore depends on the mean number
of as next to ab pairs. Of course, more complicated schemes are possible,
such as in hypercycle dynamics where a helps the reproduction of b, b helps
the reproduction of c, and so on, until eventually there is a type that helps a
(Boerlijst et al. 1993; see also Chapters 9 and 10). The approach I present
here allows all such schemes; it even allows for nonlinear effects (when the
effect of two is is not equal to twice the effect of a single i).

Consider a pair event ab → kl. When the event rate depends on the
environment of the pair (say it increases with every neighbor in state i in a’s
neighborhood), the rates must be averaged over all possible configurations
(i.e., over all configurations with zero is, with one i , with two is, etc.).

To be as general as possible, I represent the entire neighborhood of a
given pair ab at xy using two vectors,

na
ab =

⎛
⎜⎜⎝

...

nia
...

⎞
⎟⎟⎠ and nb

ab =

⎛
⎜⎜⎝

...

njb
...

⎞
⎟⎟⎠ , (19.7)

with i, j ∈ �. The vector na
ab simply counts the different types of neighbors

around a in the ab pair, while nb
ab does the same around b. These two
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vectors together give a two-column matrix,

nab =
(
na

ab nb
ab

)
, (19.8)

which therefore fully characterizes the state of the environment nab of the
ab pair (see Figure 19.4). While the environment Exy itself simply speci-
fies the geometrical connections around two sites x and y, the neighborhood
nab specifies the state of this environment around a pair of sites in states a
and b. The assumption that all interactions occur only among neighbors
and are not dependent on the actual configuration (i.e., whether a neigh-
bor is located to the north or to the south, or to any other direction, is
irrelevant) implies that this configuration completely determines the rate of
events ab → kl.

In principle, we could calculate the average event rate r̄σ (i j → kl) by
averaging over the environments of all i j pairs on the lattice. An equivalent
and conceptually advantageous alternative, however, is to work out the fre-
quency distribution of all possible neighborhoods ni j on the lattice. If the
proportion of a given neighborhood ni j (relative to all possible configura-
tions) is denoted by Fσ (ni j), the average rate is given by

r̄σ (i j → kl) =
∑
ni j

Fσ (ni j) r(i j → kl|ni j ) . (19.9)

The only component on the right-hand side that still depends on the state of
the lattice is Fσ (ni j). This quantity can be interpreted as a (local) density,
this time not of a simple pair but of a larger spatial configuration. Thus, the
pair equations may depend not only on the densities of triplets (which are
needed to calculate local densities qi | jk), but also on the densities of more
complicated local configurations.

Conditional average rates are calculated in a similar fashion. The com-
plicating factor here is that they depend on one of the pair’s neighbors (they
are the mean rate over triplets, not pairs). Writing down the expression is
straightforward:

r̄σ (bj → kl|abj) =
∑
nabj

Fσ (nabj ) r(bj → kl|nabj ) , (19.10)

where Fσ (nabj) is the frequency distribution of the neighborhoods nabj of
abj triplets (nabj are three-column matrices that count the number of neigh-
bors of a, b, and j similar to the way nab describes the neighborhood of an
ab pair). Note that in the case of environment-independent pair event rates,
calculating the densities of the larger local configurations is not necessary.
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Box 19.2 Pair dynamics of the simple birth–death–movement process

In the artificial ecology defined in Box 19.1, there are four different pair
combinations: oo, ×o, o×, and ××. As an example of the dynamics
of their densities, the differential equation for dp×o/dt is worked out in
detail. Setting up the bookkeeping, using all direct and indirect (neigh-
bor) pair events that affect the density of ×o pairs, yields the transitions
schematically shown below.

�

�

�

�

�
�

φd
+ (n − 1)qo|×o(φd + φm)

+ (n − 1)q×|×oφd

φd
+ (n − 1)qo|××(φd + φm)

+ (n − 1)q×|××φd

(n − 1)q×|ooφb

φb
+(n − 1)q×|o×(φb + φm)

φm

φm

Contributions of direct and indirect events affecting the density of ×o pairs. To calculate net
transition rates, the rates indicated in the diagram have to be multiplied by the density of the
source pairs.

Summing all terms in this figure and simplifying the ensuing expression
using qo|i j + q×|i j = 1, (n − 1)φ = (n − 1)/n = 1 − φ, and po× = p×o
yields

dp×o

dt
=− p×o

[
φb + d + (1− φ)qo|×om + (1− φ)q×|o×(b + m)

]
+ poo (1− φ)q×|oo(b + m)

+ p××
[
d + (1− φ)qo|××m

]
.

The first term, incorporating all events that destroy×o pairs, has four com-
ponents. The first component represents the × individual giving birth into
the o site, the second represents the death of the× individual, the third rep-
resents the departure of the × individual through movement (note that this
depends on the proportion of empty sites surrounding it), and the fourth
represents the arrival of another × individual at the empty site (which may
happen if a neighboring × individual reproduces or moves).

Similar considerations for dpoo/dt and dp××/dt yield the other two
differential equations that describe the pair dynamics of this system:

dpoo

dt
=− poo 2(1− φ)q×|oo(b + m)

+ p×o 2
[
d + (1− φ)qo|×om

]
,

continued
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Box 19.2 continued

dp××
dt

=+ p×o 2
[
φb + (1− φ)q×|o×(b + m)

]
− p×× 2

[
d + (1− φ)qo|××m

]
.

The factor 2 arises in these expressions because oo and×× are symmetric,
so that all events can happen “on both sides.”

Thus we have obtained a set of three differential equations that describe
the pair dynamics of the artificial ecology defined in Box 19.1. Note that
because the sum of the pi j equals 1, one of the differential equations is
actually redundant: we could do away with, for example, the differential
equation for poo and substitute poo = 1 − 2p×o − p×× in the remaining
two equations for p×o and p××.

Because we must analyze the dynamics without keeping track of the en-
tire lattice, the densities of triplets (and in the case of density-dependent
rates, the densities of the larger local configurations) have to be estimated
from the distribution of pairs. This estimation “closes” the system of dif-
ferential equations because they are now entirely defined in terms of pairs.
How to close the system is dealt with in Section 19.4.

Here we summarize our understanding developed so far: given

� a lattice L ,
� a set of states �, and
� a list of possible events i j → kl and their rates r(i j → kl|ni j ),

differential equations can be constructed for the expected rates of change
in the frequency pab of all pair combinations ab, as a function of all

� pair frequencies pab,
� conditional probabilities qi |ab, and
� frequencies Fσ (nab) and Fσ (niab) of configurations surrounding pairs

and triplets, respectively.

Of these, only the pair frequencies are known, because the differential equa-
tions keep track of the numbers of pair combinations. The conditional prob-
abilities qk|i j and the frequencies of larger configurations either have to be
calculated from the explicit state of the lattice (which would require explicit
simulations) or have to be worked out by other means.

In principle, differential equations can be derived for the dynamics of
triplets (and of more complex configurations) analogously to the derivation
of the differential equations for pairs. However, there are various reasons
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for not pursuing this avenue. First, the bookkeeping is much more
complicated, as all transitions from one configuration to another must
be incorporated. Second, the dynamics of configurations will depend on
“configurations of configurations,” which means that the problem has only
been carried to the next level. We therefore estimate the frequencies of more
complex configurations from the simpler ones (pairs); this is the essence of
a solution to what is often called the “moment-closure” problem.

19.4 Pair Approximations for Special Geometries
The pair equations that we have derived so far are exact (on infinitely large
lattices); no simplifying assumptions have been made. The problem is that
they depend on the density of configurations that are outside their scope. To
avoid a cascade of dependency on ever more complex configurations, the
system of differential equations has to be “closed.” That is, if the aim is to
describe the dynamics of pairs, everything has to be expressed in terms of
configurations no more complex than pairs. This implies that the frequen-
cies of all configurations larger than pairs have to be approximated.

Consider the conditional probability qi |ab. This gives the probability
that a site next to the a of an ab pair is in state i . The most straightforward
approximation for the conditional probability qi |ab is based on the simple
heuristics that the more distant site of the pair (in this case b) might not
influence the probability of finding an i next to the a; that is,

qi |ab ≈ qi |a (19.11)

(Matsuda et al. 1992; see also Chapters 13 and 18). The error this assump-
tion introduces may be considerable. For example, if b is rare globally, qb|a
is likely to be small for a �= b. However, if b is clustered on the lattice,
qb|ab may be much larger, because the ab pair is likely to be picked from
within such a cluster and then more bs are likely to be nearby.

Any approximation introduces errors and information is inevitably lost.
In this section I discuss how knowledge of the geometrical structure of the
lattice can be used to derive improved “closure” assumptions (i.e., expres-
sions for qi |ab in terms of pair densities). The basic method is outlined first
for “random” lattices – lattices in which every site is connected to n other
sites, but with no overall spatial structure, such as depicted in Figure 19.1b.
I then discuss how to correct for lattices that are more regular and that do
have an overall spatial structure – such as the flat lattice in Figure 19.1a.
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Random lattices
On a random lattice like that depicted in Figure 19.1b, sites are randomly
connected to n other sites. Consequently, if the number of sites is large,
the probability that the members of a pair have neighbors in common is
negligible. Thus, for the probability that a given triplet is in state iab one
can write

piab = pi pa pbCiaCabTiab , (19.12)

where pi denotes the probability of finding a site in state i ,

pi =
∑

j

pi j , (19.13)

Ci j denotes the pair correlation between i and j sites,

Ci j = pi j

pi pj
, (19.14)

and Ti jk denotes the triple correlation of i jk chains, which is basically the
error in the estimate based only on pairs. Notice that there is no correlation
factor Cib; the only way b can “influence” the probability distribution of
a’s other neighbors is through the triple correlation.

The values of triple correlations Tiab are determined by the full spa-
tial dynamics of the system under consideration. Unless they are estimated
from full stochastic simulations, however, their values are unknown. There-
fore, to arrive at a closed set of differential expressions for pairs, assump-
tions have to be made with respect to the triple correlations. The simplest
approach is to assume that they are constant. That is, we substitute an esti-
mate τi jk for every triple correlation Ti jk . In fact, the standard pair approx-
imation follows from the assumption that all Tiab = 1. One then obtains

qi |ab = piab

pab
= pi pa pbCiaCab

pa pbCab
= piCia = qi |a . (19.15)

Thus for chain-like triplets the simplest estimate for qi |ab is indeed simply
qi |a; the fact that the a has a b neighbor becomes irrelevant.

Some authors (Harada et al. 1995; Keeling 1995) have analyzed im-
proved pair approximations that are based on the assumption that these
triple correlations have values not equal to 1, particularly for bab-type
triplets (see Chapter 18). The reason for doing so is best understood by
considering a biological example. Let b stand for a site that is occupied by
a member of a rare population and let a stand for an empty site. What is
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the likelihood that in an ab pair the a becomes occupied and becomes a b?
There are two ways for this to happen: the b in the pair reproduces or an-
other b neighboring a reproduces. The probability of the latter happening
is proportional to qb|ab. However, under the classical pair approximation,
this would be approximated by qb|a , which is very small when b is rare.
Analysis of simulations have shown that if b is rare and tends to form clus-
ters, within such clusters qb|a is not small at all. By setting τbab to a value
larger than 1, we assume that, if an a has one b neighbor, it is likely to have
more. In other words, increasing the triple correlations increases the degree
of crowding on the lattice, which may have various consequences.

It should be noted that the estimates τiab for the triple correlations are
not independent, as they have to satisfy the consistency condition∑

i

qi |ab =
∑

i

qi |aτiab = 1 . (19.16)

If all τiab are equal to 1, this condition is satisfied. But if a value not equal
to 1 is chosen for one τiab, the others have to be corrected such that Equa-
tion (19.16) holds for all qi |a .

Triangular lattices
Most cellular automata assume square lattices, but the way to improve on
the classical pair approximation is most easily understood by first consider-
ing a triangular lattice – that is, a lattice in which every site has six neigh-
bors arranged in a hexagon.

On such a lattice, a triplet can be in one of two different configurations,
“chain-like” (or open) or “triangular” (or closed). In fact, there is a 2/5
chance that a randomly picked triplet is in a closed configuration and a 3/5
chance that it is open (see Figure 19.5). We can take this information into
account when calculating conditional probabilities.

For open triplets, denoted by ∠iab, we can still write

p∠iab = pi pa pjCiaCabT∠iab , (19.17)

but for closed triplets we must take into account an extra correlation fac-
tor Cbi :

p�iab = pi pa pjCiaCabCbi T�iab . (19.18)

Then, if θ denotes the probability of finding the triplet in closed form (θ =
2/5), one obtains

qi |ab = qi |a
(
(1− θ)T∠iab + θCibT�iab

)
. (19.19)
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Figure 19.5 The five different configurations for an iab triplet on a triangular lattice.

On a triangular lattice there are two kinds of triple correlation, T∠iab for
open triangles and T�iab for closed triangles. There is no a priori reason
these should be the same. Let τ∠iab and τ�iab be our estimates for the triple
correlations T∠iab and T�iab. The consistency condition then becomes∑

i

qi |ab =
∑

i

qi |a
(
(1− θ)τ∠iab + θCibτ�iab

) = 1 . (19.20)

With τ∠iab = τ�iab = 1, this holds (for all qi |a and θ > 0) only if all
Cib = 1, in which case the pairs are entirely uncorrelated. Therefore, we
cannot simply set τ∠iab = τ�iab = 1. The simplest assumption that satis-
fies condition (19.20) is that all τ∠iab = 1 and all τ�iab = 1/Cib. Note,
however, that this implies that we have “uncorrected” the correlation for
closed triplets (because we divide by the correlation among the far ends
of the triplet). In fact, we have recovered the classical pair approximation,
because now the proportion of triangles θ disappears from our estimate.

To arrive at more sophisticated approximations, one must take into ac-
count a number of facts. The first is that open triple correlations should be
symmetric (i.e., τ∠iab = τ∠bai ); the second is that all closed triple correla-
tions should also be rotationally symmetric (i.e., τ�iab = τ�abi = τ�bia =
τ�bai = τ�aib = τ�iba). Thus our estimates for τ�iab have to satisfy the
set of Equations (19.20) under these symmetry conditions: the same triple
correlation estimate τ�iab may occur in up to three different equations (i.e.,
in those for

∑
i qi |ab,

∑
a qa|bi , and

∑
b qb|ai ). It is always possible to find

solutions, that is, approximations for the τ s. Actually, there are many more
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triple correlation estimates to be solved for than there are equations: if N is
the number of states in �, the number of equations to be satisfied is of order
N 2 while the number of triple correlations is of order N 3. (Incidentally, this
also shows that many more differential equations would be needed to track
triplets in addition to pairs).

I have found no simple expressions for τ�iab on the basis of the scheme
τ∠iab = 1. The simplest consistent approximation that I have found is
based on the assumption that closed and open triple correlations are equal
(i.e., τ�iab = τ∠iab = τiab). The resulting set of equations∑

i

qi |a
(
(1− θ)+ θCib

)
τiab = 1 (19.21)

is satisfied by

τiab =
⎧⎨
⎩1 if i �= b

1
qb|a
[
1−∑i �=b qi |a

(
(1− θ)+ θCib

)]
if i = b

, (19.22)

which leads to the simple estimate

qi |ab ≈
{

qi |a
(
(1− θ)+ θCib

)
if i �= b

1−∑j �=b qj |ab if i = b
. (19.23)

In a later section, this approximation is compared with explicit simulations
of the artificial ecology described in Box 19.1. Keeling et al. (1997a) and
Rand (1999) also provide examples of pair-dynamics models that are based
on this approach. (Notice, however, that these authors did not apply the
correction terms τiab to their estimates, which may have caused a small
error in their results.)

Square lattices
Configurations other than triangles can be taken into account in a similar
manner. Take, for example, an iab triplet on a square lattice (n = 4). There
is no direct connection between the b and the i , but there is an indirect one
through an intermediate site. In other words, the iab triplet may form part
of an iabj square quadruplet. Given the square configuration, the probabil-
ity of finding it in state iabj is

p�iabj = pi pa pb pj CiaCabCbj Ci j T�iabj . (19.24)

One can arrive at an estimate for qi |ab in a fashion similar to that for
triangular lattices. Averaging over all j configurations and using the fact
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that on a square lattice 1/3 of the triplets are straight and 2/3 form part of a
square, one arrives at the estimate

qi |ab ≈ qi |a
(

1
3τ∠iab + 2

3

∑
j qj |bCi jτ�iabj

)
, (19.25)

where the estimates τ∠iab and τ�iabj again have to be chosen such that the
conditional probabilities sum to 1.

In this formulation, the b from the example above can be thought of
as modifying the probability distribution of the intermediate site, which
in turn modifies the probability distribution of a’s other neighbor. This
way, the influence of b “percolates” through the intermediate site and so
modifies qi |a .

However, the influence of b may percolate through many more routes.
This suggests that we need not confine ourselves to triangles or squares.
Actually, every closed chain that goes through iab will contribute to the
conditional probability qi |ab. It should therefore be possible to find increas-
ingly sophisticated estimates for qi |ab by including closed loops (and other
closed structures) of greater length while still using only pairs as building
blocks.

Notice, however, that this approach still assumes that higher-order cor-
relations (T�i jkl etc.) are all either fixed or expressed in terms of pair fre-
quencies. There is no a priori reason these correlations should not have dy-
namics of their own, and it may well be that for an adequate description of
configurations, higher-order correlations must be included. Then either spe-
cific assumptions can be made as to the size of some of these correlations,
or the analysis should be extended to include the dynamics of more complex
configurations. As an example of the first approach, one can set T∠i jk to a
value not equal to 1, and work out the consequences. This is basically the
underlying strategy of the improved pair approximations (see Chapter 18;
Satō et al. 1994; Harada et al. 1995; Keeling 1995). If this scheme does not
work, the higher-order correlations have to be derived from the dynamics
of the system. Thus differential equations for configurations more com-
plex than pairs have to be derived and analyzed; not surprisingly, this is a
difficult undertaking (see Morris 1997 for an example).

Toward higher-order approximations
At this point we have expressed the conditional probabilities qi |ab in terms
of pair densities. If the model that is studied has constant pair event rates,
the differential equations are now fully closed. However, if event rates are
density dependent, another approximation step is necessary.
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As we have seen, with density-dependent event rates, the differential
equation for ab depends on averages over neighborhoods surrounding the
ab pairs (nab and niab). In a spatially explicit simulation, these frequency
distributions [Fσ (nab) and Fσ (niab)] can be measured. Because we want
to avoid simulations of the full lattice and develop a model purely in terms
of pairs, we have to approximate these frequency distributions in terms of
pairs. Thus, to calculate the average event rates, estimates for the likelihood
of larger configurations [i.e., Pr(nab) for Fσ (nab) and Pr(nabj) for Fσ (niab)]
must be formulated.

The average rate r̄σ (ab → kl) depends on the frequency distribution of
the configurations Pr(nab). This can be approximated in much the same
way we approximate triplet frequencies, using pair correlations as building
blocks. The main difficulty is that many more correlations have to be taken
into account.

As a start, consider a random lattice, so that members of a pair are un-
likely to have common neighbors. The assumption then is that the neigh-
bors of a and b are independently distributed; that is,

Pr(nab) = Pr(na
ab)Pr(nb

ab) . (19.26)

Recall that a neighborhood nab consists of two vectors giving the number of
ia and bj pairs. Having no neighbors in common means that the pairs in the
left and right environments do not share sites and can be treated indepen-
dently. A simple assumption then is that probabilities follow a multinomial
distribution

Pr(na
ab) = (n − 1)!

∏
i

(qi |a)nia

nia! , (19.27)

where
∑

ia nia = n − 1 (there are n − 1 neighbors to be distributed, be-
cause one of the neighbors, namely, the other member of the pair, is already
given). If a and b share neighbors, or if there are chains of connections be-
tween the neighbors of each, this method introduces an error, because a’s
neighbors and b’s neighbors can no longer be considered independent.

For example, if a pair forms part of only one triangle, both sites have
n − 2 “independent” neighbors and one shared neighbor. The probability
distribution of the independent neighbors can still be represented by a
multinomial, except that the nia (or nbj ) should sum to n − 2. If it is as-
sumed that open triplets are uncorrelated, the probability distribution of the
shared neighbor can be estimated by

Pr(common neighbor of type i |ab) = qi |aCibτ�iab , (19.28)
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as we have seen in the section on estimating the frequencies of closed
triplets. Although it would involve some cumbersome combinatorics, in
principle both probability distributions can be calculated to find the proba-
bility distribution of the entire configuration around the pair.

However, all these calculations become simpler if it is assumed that
event rates are linear functions of their environment, that is, if the effect
of one neighbor is independent of that of the other neighbors. In this case,
the rate averaged over the configurations equals the rate for the mean con-
figuration. That is,

r̄σ (ab → kl) =
∑
nab

Fσ (nab) r(ab → kl|nab)

= r(ab → kl, nab) ,

(19.29)

where

nab =
∑
nab

Fσ (nab)nab . (19.30)

I do not attempt to further discuss the complexities that arise in trying
to incorporate density-dependent event rates in pair-dynamics models. In
particular, overlap among the neighbors of a pair introduces all sorts of
extra correlations to be taken into account. Most likely, the only feasible
approach is to assume multinomial distributions [Equation (19.27)] and ac-
cept the fact that some error will remain if the system under study is defined
on a regular lattice.

19.5 Pair Approximations versus Explicit Simulations
We have seen in the previous section that it is possible to improve on clas-
sical pair approximation by introducing new correlations to incorporate
knowledge of the geometrical structure of the lattice. The resulting expres-
sions are cumbersome, however, and substituting them into the differential
equations leads to complicated sets of expressions that are still rather diffi-
cult to analyze.

More important, at this stage it is not known to what extent these refine-
ments actually improve the accuracy of the differential equations for pairs.
When is classical pair approximation sufficient? When do we need to in-
corporate extra correlations? Is it really worth the trouble? In other words,
some estimate of the errors associated with the various approximations is
needed. Error analysis can be used to assess the accuracy of the approxi-
mation (Morris 1997), but as this approach is worthy of a chapter in itself,
in this section the accuracy of pair-dynamics models is assessed merely by
comparing their results with explicit spatial simulations.



380 D · Simplifying Spatial Complexity: Techniques

Box 19.3 Singlet dynamics and the mean-field equation

To calculate local densities qj |i , the singlet densities should be known.
These can be derived from the differential equations for the dynamics of
pairs. Because it is assumed that all sites have the same number of neigh-
bors, we have pi = ∑j pi j (which is a standard relationship from proba-
bility theory). Thus, from the pair equations derived in Box 19.2, we can
derive the equation for dp×/dt by summing dp×o/dt and dp××/dt . This
yields

dp×
dt

= (bqo|× − d)p× . (a)

Ignoring spatial structure implies assuming qo|× = po = 1 − p×, which
then leads to

dp×
dt

= (b(1− p×)− d
)

p× . (b)

This is the well-known model for logistic population growth. It can be
verified that this model results from the spatially explicit one under mean-
field conditions, that is, if the population is well connected (n is large)
and/or well mixed (the rate of movement m is very large). If b > d, a small
population will grow logistically toward a carrying capacity p̄× = 1−d/b.

(A note of caution: if the number of neighbors is not constant across the
lattice, p× = p×o + p×× does not hold, and the differential equation for
singlets has to be derived separately.)

Consider the system introduced in Boxes 19.1 to 19.3. This system mod-
els a population of individuals inhabiting a lattice (so the sites may be either
empty or occupied, � = {o,×}). The events that change the distribution
are birth, death, and movement (see Box 19.1). Notice that the rates are
constant (i.e., they do not depend on the environment of a pair), so that we
do not have to average over configurations. The resulting pair-dynamics
equations are given in Box 19.2.

Stochastic, event-based simulations of the artificial ecology have been
run for two types of lattices, a random lattice (2500 sites with six neighbors
per site) and a triangular lattice (also 2500 sites with six neighbors per
cell and with periodic boundary conditions), starting with a low number of
randomly distributed individuals [expected initial density p×(0) = 0.001].
The parameters chosen for the simulations are as follows: per capita birth
rate b = 2; per capita mortality rate d = 1; and per capita movement rate
m = 1. These runs can be compared with results obtained by numerical
integration of the pair-approximation model.

Figure 19.6 shows a run for the random lattice case and the
corresponding pair-approximation model (classical pair approximation
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Figure 19.6 Logistic growth on a random lattice. (a) Global density p× of the simulation
(dots), the trajectory predicted by the pair approximation (continuous line), and the trajec-
tory predicted by the equivalent mean-field model (nonspatial logistic growth; dashed line).
(b) Local densities q×|× in the simulation (dots) and as predicted by the pair-approximation
model (continuous line). Notice that the local density q×|× equilibrates much faster than
the global density p×; this fact is very useful for deriving invasion conditions.

with θ = 0). Because in the simulation the lattice is finite, the population
density fluctuates at first due to demographic stochasticity. Such demo-
graphic stochasticity is inevitable. However large the lattice, if the initial
population consists of only a few individuals, it will be a matter of chance
whether they reproduce before they die. There is always a probability that
the population goes extinct even if its expected rate of growth is positive.
Also note that the simulation lags a bit behind the prediction made by the
pair-dynamics model. This lag is a direct consequence of demographic
stochasticity, since at low overall densities random events can have a con-
siderable effect, either accelerating or decelerating population growth.
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In the trajectory that follows the initial fluctuations, the fit is striking.
What can be seen is that during the initial phase of exponential growth,
the local density q×|× converges to a constant value (much larger than the
global density p× at this initial stage; the significance of this effect is dis-
cussed by Matsuda et al. 1992). Only when the lattice fills up and different
clusters start to mingle does the local density rise again. Both the exponen-
tial phase and the end phase, where the population has settled at its carrying
capacity, are well predicted by the pair-approximation model. Notice that
this carrying capacity is somewhat lower than that of the nonspatial model;
this is caused by the nonhomogeneous distribution of the population, which
causes individuals to “experience” a higher density of conspecifics than ex-
ists globally.

For the regular, triangular lattice, the situation is a bit different. As
can be seen by comparing Figure 19.6 and Figure 19.7, population growth
is much slower on the regular lattice. This is no surprise because on a
two-dimensional lattice, growth of a focus of individuals is confined to its
boundary (consequently, the area covered by a cluster increases roughly
in proportion to t2). What can also be seen is that the pair approximation
does not perform as well. The classical pair approximation (with θ = 0)
is widely off the mark. The pair approximation that was derived earlier
(with θ = 2/5 = 0.4) predicts local densities qi |× fairly well, but its global
density p× increases much faster than in the simulation. It may come as a
surprise that increasing θ even further (to 0.6) produces an approximation
that is reasonably accurate. There is no a priori reason to assume a high
value of θ , but doing so apparently captures the consequences of clustering
quite well, particularly in the early phase of cluster formation (where q×|×
equilibrates while p× increases) and for the final equilibrium. Only during
the intermediate phase where the lattice fills up does the approximation fail
to perform as well.

19.6 Invasion Dynamics
Studies based on a probabilistic cellular automaton framework have shown
that results of classical game theory (which is based on random encounters
between individuals) can be significantly affected by spatial structure (see
Chapter 8; Axelrod 1984; Nowak and May 1992; Boerlijst et al. 1993). Pair
approximation provides a tool for understanding these effects.

One of the basic concepts in biological game theory (as in any branch
of evolutionary theory) is that of fitness. Fitness should be defined as the
invasion capacity of a rare mutant (Metz et al. 1992; Rand et al. 1994).
In a well-mixed, nonspatial system this poses no theoretical problems, but
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Figure 19.7 Logistic growth on a triangular lattice. (a) Global density p× of the simulation
(dots); trajectories (continuous lines) as predicted by the pair approximation based on dif-
ferent values of θ (indicated in the graph), the proportion of triplets that are in closed form;
and trajectory (dashed line) predicted by the equivalent mean-field model (nonspatial logis-
tic population growth). (b) Local densities q×|× in the simulation (dots) and as predicted
by the pair-approximation models (continuous lines).

deriving the “invasion exponent” of a rare mutant in an explicitly spatial
system is no trivial matter. This problem has been investigated in more
detail by van Baalen and Rand (1998); here, the basic approach is illustrated
using the simpler problem of a population’s invasion of an “empty” world.
Apart from evolutionary considerations, this gives insight into the factors
that determine a population’s persistence (since extinction is basically the
reverse of invasion).

Using q×|oo poo = p×oo = qo|o× po×, the dynamics of an invading popu-
lation can be written in matrix form:
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d P×
dt

= M(Q×)P× , (19.31)

where

P× =
(

po×
p××

)
and Q× =

(
qo|×
q×|×

)
. (19.32)

Because the “invasion matrix” M(Q×) depends only on local densities that
equilibrate relatively quickly (Matsuda et al. 1992), the invasion dynamics
are given by

d P×
dt

= cQ̃×eλt , (19.33)

where λ is the dominant eigenvalue of M and Q̃× is its normalized eigen-
vector (which is a vector of local densities qi |×). In this case, the invasion
condition becomes obvious: λ should be positive. Van Baalen and Rand
(1998) argue that by extending this approach to the dynamics of a rare mu-
tant in a lattice dominated by a resident population, λ can be interpreted as
a fitness measure, while Q̃× gives information about the associated “unit of
selection” (i.e., the entity whose fitness is maximized).

For the specific model considered above, the invasion matrix is

M(Qx )=⎛
⎜⎜⎜⎜⎝

(b + m)(1− φ)qo|o× − bφ

−(b + m)(1− φ)q×|o×
−d − (1− φ)qo|×o

2bφ + 2(b + m)(1− φ)q×|o×

d + (1− φ)mqo|×× −2d + 2(1− φ)mqo|××

⎞
⎟⎟⎟⎟⎠

(19.34)

From this, the condition for invasion [M(Q×) has a positive dominant
eigenvalue] can be calculated:

b(1− φ)q̃o|o× − d + m(1− φ)(q̃o|o× − q̃o|×o) > 0 . (19.35)

Using improved pair approximation, Equation (19.23), this yields

b(1− φ)− d − m(1− φ)q̃×|×
> θ q̃×|×

[
(b + m)(1− φ)+ m(1− φ)q̃×|×

]
,

(19.36)
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where q̃×|× = 1 − q̃o|× = 1 − d/b. That q̃o|× equals d/b follows readily
from the singlet equation (a) in Box 19.3.

On a random lattice, θ equals zero, in which case the right-hand side of
inequality (19.35) vanishes. Thus, a non-moving population can invade a
random lattice if b(1 − φ) > d . Invasion is thus more difficult the lower
the number of connections per site (because this reduces the factor 1−φ =
1− 1/n). This result is in accordance with the conclusion of Matsuda et al.
(1992) that, for a focus to grow on a lattice, the birth rate must exceed the
death rate by a certain amount. It can also be concluded that movement
facilitates invasion: if m becomes very large, the invasion condition will
become b > d , which is the invasion condition for the nonspatial model.

Triangular lattices are even more difficult to invade, because the right-
hand side of the invasion condition will be positive, so that higher values of
b or m are necessary. The ecological reason for this is that competition for
space is more intense on regular lattices than on random lattices. Even if a
lattice is totally empty, members of the invading population will crowd to-
gether, effectively competing for space with each other (which is indicated
by q×|o× > 0). On a random lattice this effect is almost absent because
there an expanding focus of individuals has many more sites to grow into.

19.7 Concluding Comments
Simulations of probabilistic cellular automata are excellent for developing
intuition regarding spatial processes (see, for example, Chapters 6 to 9;
Crawley and May 1987; Boerlijst et al. 1993; Claessen and de Roos 1995).
The drawback, however, is that they take much computer time to simu-
late (transient behavior persists) and they are difficult to analyze and com-
pare with classical models for population dynamics (de Roos et al. 1991;
Claessen and de Roos 1995). Pair-dynamics models fill the gap between
unwieldy spatially explicit models and nonspatial models that are easy to
analyze but fail to capture the spatial effects.

Even though a fairly simple pair-dynamics model may still involve a
substantial number of differential equations, there are far fewer than in an
equivalent cellular automaton model (whose dynamical dimension equals
the number of sites on the lattice). The first advantage of pair-dynamics
models is therefore purely practical: even if the model turns out to be too
complex to obtain analytical results, within the same amount of computer
time a much greater region of parameter space can be explored with a pair-
dynamics model than with a probabilistic cellular automaton. In addition,
pair-dynamics models do not “suffer” from demographic stochasticity, but
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whether this is actually an advantage will depend on the system under
consideration – demographic stochasticity may be the dominant process on
smaller lattices. A third, more important advantage is that pair-dynamics
models allow direct insight into the effect of space, because classical
population-dynamical models result in the limiting case of high movement
rates. Finally, analytical insight often is possible. For example, in this chap-
ter, explicit persistence conditions are derived that indicate how persistence
of an artificial ecology depends on individual-based properties. Related to
the persistence problem is the problem of fitness in “viscous populations”:
both require an understanding of invasion conditions (van Baalen and Rand
1998).

Although pair-dynamics models incorporate an essential aspect of spa-
tial structure, they ignore other aspects: in particular, the standard “clo-
sure assumption” of pair approximation underestimates the consequences
of spatial clustering. The assumption that triple correlations are simply
absent (i.e., that the probability of encountering a particular triplet configu-
ration is fully given by pair densities) fails to incorporate certain aspects of
population clustering. For example, the simulations presented in this chap-
ter show that local competition for space reduces the rate of population
growth on a two-dimensional lattice. A number of improved approxima-
tions have been published (see Chapter 18; Satō et al. 1994; Harada et al.
1995; Keeling 1995) that incorporate this effect. They presuppose that cer-
tain kinds of triplets (in particular bab-type triplets) are more common than
expected on the basis of pairs. This increase in triple correlations implies
that if a has one rare neighbor b, it is likely to have more (which would
not be the prediction of classical pair approximation). For example, if b
stands for an infected host and a for a susceptible host, this would lead to
increased clustering and hence increased competition for hosts among the
infecting parasites.

Here, an improved approximation is proposed that is not based on such
a priori assumptions of triple correlations of certain types of triplets, but
rather on an evaluation of how triple correlations may arise as a conse-
quence of the lattice structure itself. In contrast to random lattices, on reg-
ular lattices (for example, the triangular lattice considered in this chapter)
the members of a pair often have common neighbors. This introduces extra
correlations, and when these are taken into account one can predict that, for
example, bab-type triple correlations may be larger than 1.

An important limitation of the analysis presented here is that the number
of neighbors per site should be constant. If this assumption is relaxed,
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and there are good reasons for wanting to do so – for example, to model a
network of social relations in which some individuals have more contacts
than others – the analysis becomes more complex (Morris 1997; Keeling
et al. 1997a; Rand 1999). Not only does one have to introduce additional
equations for the dynamics of single sites (which can no longer be derived
from the pairs), one may also have to make assumptions about many more
higher-order correlations.

The extent to which pair-dynamics models are satisfactory depends on
the goal of the modeler. As we have seen, these models do not capture
all of the phenomena that can be observed in simulations of fully spatial
probabilistic cellular automata. Basically, the approximation fails when-
ever spatial structures arise that are difficult to “describe” using pairs alone.
More technically, the method fails whenever significant higher-order corre-
lations arise – that is, whenever the frequency of particular triplets (or trian-
gles, squares, or all sorts of star-like configurations) starts to diverge from
what one would expect on the basis of pair densities. Thus, pair-dynamics
models satisfactorily describe probabilistic cellular automata in which only
“small-scale” patterns arise. Larger, “meso-scale” patterns such as spirals
are difficult to capture using this method.

However, probabilistic cellular automata occupy only one end of the
spectrum; models for classical nonspatial population dynamics are at the
other end, and it is there, in particular, that pair-dynamics models can
be valuable tools. In the first place, pair-dynamics models can be used
to test the assumptions underlying mean-field models. If a pair-dynamics
model does not behave significantly differently from the equivalent mean-
field model, it is probably not worth bothering about space. Second, and
more important, because they are more open to mathematical analysis, pair-
dynamics models may give real insight into why spatial models behave
differently from nonspatial mean-field models. This way, pair-dynamics
models can be used “to add space” to a well-understood but nonspatial
model without having to resort to analyzing explicitly spatial models.
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