Spatially Structured Populations

Minus van Baalen

Space

Why space is important

Different theoretical approaches

- Patch models
- Levins' metapopulation
- Reaction-diffusion models
- Cellular automata (& other individual-based models)
- (Correlation dynamics)

Space is Important

- May determine ecological stability
- May determine persistence of species
- Allow more species to coexist
- Modify selective pressures

. . .

Space is a Pain

Space makes life difficult for theoreticians

as anyone who has struggled with spatially explicit models is likely to know

Parasitoïde

http://www.idw-online.de

cherchant des larves cachés

CPB Silwood Park

de Drosophila melanogaster

Oviposition

http://muextension.missouri.edu

Oviposition

http://www.anbp.org

Emergence

http://whatcom.wsu.edu

NB plus compétition

Hétérogénéité

Localisation

FIG. 9. Part of a track showing the movements of a tachinid parasite *Cyzenis albicans*, within an arena. The circles represent small drops of sugar solution upon which the parasite adults feed. The solid circles show where feeding occurred.

Hassell & May 1974

Hassell & May 1974

of equal low density. The distribution of predators was achieved by a single parameter characterization (μ) such that

$$\beta_i = c \alpha_i^{\ \mu} \tag{2}$$

where c is a normalization constant and μ is the 'relative aggregation index'.

Eqn (2) was not intended to be a realistic description of how predators aggregate. It was chosen for its simplicity and because it conveniently spans the behaviours of random search (u - 0) to complete aggregation in the highest density area, making the remainder

gregation

FIG. 11. The relationship between the proportion of searching Nemeritis canescens (β_i) and the proportion of *Ephestia cautella* larvae (α_i) per unit area from a laboratory interaction (Hassell 1971a, b). The fitted curve was derived by use of eqn (22). $\beta_i = 0.53 \alpha_i 0.73 \pm 0.04$.

Aggregation stabilise ?

Metapopulations

- Levins model
 - occupied vs. extinct patches

Levins model

Thermodynamics Success Story

Macro-scale laws from micro-scale processes :

- Pressure & temperature from molecule movement
- Second Law: Entropy increases

ິ ດ ິ ດ ິດ ິ ດີ ດາດ 0 00 0 0 000 8 0 0 8 0 0 ິວ ດວ ວິ ວິດ ດີ ° ,° • ۰° ۰ ۰ ۰ ۰ ۰ •

Dream

Derive Universal Ecological Laws from

- Physiology
- Population dynamics
- Genetics

Producers

The second second

Systems Ecology

Very few universal 'Laws of Ecology' have emerged so far

- Healthy' ecosystems maximise thoughput
- Complex ecosystems are more stable
- Evolution always produces more complex systems

Evolution

Sole universal structuring principle

- almost faithful copying
 - reproduction + mutation
- selection

No simple emergent consequences

- no system-wide optimization
- no 'progress'

Spatial Ecologies

Theoretical Approaches

- Reaction-Diffusion Equations
- Individual-Based Models

Reaction-diffusion $d_n = f(n)$ $d_n = n(\epsilon)$

Multi-species Reaction-diffusion

CRUYWAGEN ET AL.

innovation is to allow key model parameters to vary spatially, reflecting habitat heterogeneity.

Specifically the dynamics of the system is described by

4

$$\frac{\partial E}{\partial t} = \frac{\partial}{\partial x} \left(D(x) \frac{\partial E}{\partial x} \right) + r_E E(G(x) - a_E E - b_E N), \qquad (2.1a)$$

$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial x} \left(d(x) \frac{\partial N}{\partial x} \right) + r_N N(g(x) - a_N N - b_N E), \qquad (2.1b)$$

which is the Lotka–Volterra competition model with difusion; see, for example, Murray (1989). The functions D(x) and d(x) measure the diffusion rates. The intrinsic growth rates of the organisms are reflected by the positive parameters r_E and r_N . These are scaled so that the maximum values of the functions G(x) and g(x) reflecting the respective carrying

FIG. 1. A travelling wave solution connecting the native-dominant steady state to the coexistence steady state in a spatially uniform environment. Parameter values used were $\gamma_e = \gamma_n = 0.5$, D(x) = d(x) = G(x) = g(x) = 1, and r = 2, so that the coexistence state is the only stable state.

Diffusion approach

Advantages

many mathematical tools

Disadvantages

becomes very difficult if movement is nonrandom

becomes very difficult if individuals are 'large'

Individuality

Individuality is crucially important

- in particular in spatially explicit settings
- demographic stochasticity inevitable

Boerlijst & Hogeweg's (1991)

********************** **************		
	and the second second second	att int it ftertetti
81141-111		te e territe that the state
s. terining sist.st.		

		and a second
b = 1600.		

Boerlijst & Hogeweg's (1991)

van Ballegooijen & Boerlijst 2004

New Outcomes

Evolutionary cycling Evolutionary suicide

Le Galliard et al 2003

Spatial Hypercycles

Boerlijst & Hogeweg's (1991) hypercycles

- Tend to form rotating spirals
- Parasites swept outward
- Selection on rotation speed
 - favouring higher mortality

Spatial evolution

Spirals 'unit of selection'

Rotation speed selected trait

But:

- Rapidly rotating spirals 'fly apart'
- Evolution towards criticality
 Rand, Keeling & Howard 1995

Cellular Automata

- + Nice toys
- + Colourful movies
- Difficult to generalise
- Difficult to obtain deeper insight

Levels of organisation

population-level processes

competition, predation, epidemiology, social interactions

individual-level

birth, death, development, behaviour

within-individual level

physiology, infection, immune response

Levels of organisation

population-level processes

competition, predation, epidemiology, social interactions

individual-level

birth, death, development, behaviour Within-Individual leve

physiology, infection, immune response